Jclowl glgadasln | 0 T o Lol aiogh duysl
UNIVERSITE MOULAY ISMAIL §COLE MATIONALE SUDERIEURE DARIS £T METIFRS

XML et bases de données
NoSQL

Ahmed Laatabi
a.laatabif{atjumi.acema
ENSAM - Meknes
2025-2026

NoSQL : bases de données

- Certaines BD NoSQL peuvent aussi supporter SQL a travers des APIs.

Bases de données NoSQL (Not Only SQL, Not Only Relational) vs bases de données relationnelles (SQL, Relational).

- Stocker et extraire de grandes quantités de données, sans utiliser le paradigme table-association (lignes, colonnes, clés).

- Structure moins stricte -- donc plus flexible -- que celle des SGBDR.
- SGBDR:le schéma est défini et connu a 'avance.

- NoSQL: généralement, pas de schéma prédéfini (le schéma peut évoluer dynamiquement avec les données).
- Evolution accélérée par le besoin de gérer de grandes quantités de données “Big Data” distribuées et hétérogénes.
- Boom des réseaux sociaux, IA, applications web en temps réel (jeux, e-commerce, ...).

100

Conceptual Evolution of SQL vs. NoSQL Database Use

3

- NoSQL n'a pas remplacé le modele relationnel.
- Les SGBDR offrent plus de :
- Intégrité: contraintes fortes sur les données (anomalies, doublons).
- Entreprise, finance, RH, ...
- Complexité: relations avancées et jointures entre tables.
- Approche hybride:
- Cohérence du modéle relationnel.
- Performance de NoSQL.

w £ (<4 ~ @®
8 8 8 8 & 3 8

3

Relative Popularity/Adoption Focus (Conceptual Index)

Database Type
—e— SGL (Relational)
= NoSGL (Non-Relational)

Stabilization
(Hybrid Model/NewSQL)

Rise of NoSQL
(Big Data Era)

N

source : Gemini

2008

2012 2016 2020 2024
Year

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : bases de données

- Les BD NoSQL:

Permettent des requétes rapides mais simples.
Idéales pour un stockage non structuré (text, images, ...).
- Peuvent contenir des données structurées ou non, dans un méme endroit.
Schéma Flexible qui varie en fonction des données.
Rapidité, disponibilité, flexibilité et performance.

- Les propriétés ACID (modéle relationnel) d’'une transaction ne sont pas prioritaires :

Atomicité : une transaction est indivisible (exécutée complétement ou pas).

Consistance : respect des contraintes d'intégrité apres la validation d'une transaction.

Isolation : les transactions concurrentes doivent étre exécutées séquentiellement.

Durabilité : une transaction validée est permanente.

— Certaines bases de données NoSQL supportent quand méme des caractéristiques ACID pour un
minimum de consistance, mais généralement : conformité ACID — SGBD relationnel.

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : BASE

- Le modele BASE (Basically Available, Soft state, Eventually consistent) suit une philosophie différente :

- BA : 'écriture et la lecture des données sont toujours disponibles, sans garantie de consistance
(données non a jour). Les données sont disponibles grace a la réplication sur plusieurs nceuds de la
BD. Un nceud peut livrer une donnée qui n'est pas a jour.

- S : pas de consistance stricte, la valeur d'une donnée peut changer au cours du temps (état
temporaire ou transitoire). Le SGBD délégue la consistance a la charge du développeur (traitements
externes).

- E : aprées un certain temps, la consistance des données sera quand méme atteinte grace a la
propagation des mises a jour en arriere-plan.

- Les conflits d'écriture sont résolus grace a des mécanismes de synchronisation comme le Last-write-wins.
- Les noeuds échangent des informations (gossip) pour s'accorder sur une méme donnée consistante.

— Les données sensibles ne doivent pas étre stockées en NoSQL.
— Les données financiéres (paiements) nécessitent les propriétés ACID.

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : théoreme CAP

Le théoréme CAP (théoreme de Brewer) suggere qu'une source de données distribuée ne peut garantir
que deux des trois propriétés suivantes :
Consistency, Availability, and Partition tolerance

Consistance (ou cohérence) : toutes les lectures recoivent la méme réponse (aucune donnée obsoléte).
Disponibilité : toutes les requétes recoivent une réponse (méme en cas de panne partielle).
Tolérance au partitionnement : disponibilité malgré des interruptions et des partitionnements du réseau.

\

o Deux partitions du systéme ne peuvent pas communiquer (panne, probléme réseau, -

Consistency

ACID — CP

BASE ad AP CA I

Des bases de données CA n'existent pas en pratique !
o Un SGBD distribué doit nécessairement gérer les pannes du réseau. Availability |Ap| Fartition

Tolerance

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : sharding

- Sharding (Evolution/scalabilité horizontale) : répartir les données sur plusieurs BD (machines) distantes.
- Extensibilité : de nouveaux serveurs (shards) peuvent étre ajoutés pour gérer plus de données.
- Rapidité: améliore la performance en accélérant les requétes de traitement des données.
- Disponibilité : réplication des données et tolérance aux pannes sur un shard.
- vsScalabilité verticale : augmenter la capacité d'une méme machine (CPU, RAM, stockage).
- Existe aussi dans le modele relationnel, mais c’'est plus une caractéristique native du modéle NoSQL.
- Sharding automatique dans les SGBD NoSQL lorsque la taille des données croit.

Shard Key

Paint Color

$500

$20

Le shard key est la clé
utilisée pour répartir les
données entre les shards.

$33
$1961
$70

l \ source : TidB
1000 - 1999 2000 - 2999 3000 - 3999

o Toeon [o e T

1598 1022 $33 1567 2023 $20 1324 3024 $500
1621 1022 $1961

1765 2023 $70

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Types de BD

Clé-valeur : les plus simples, stockage sous forme
de collections de paires clé-valeur.

Orientée documents : stocke les données sous
forme de documents semi-structurés,
généralement au format XML ou JSON.

Orientée graphes : organise les données sous
forme de noeuds connectés. Les relations entre les
nceuds stockent aussi des données. Idéal pour
représenter les données des réseaux complexes.

Orientée colonnes : stocke les données dans des
tables, ou une ligne peut avoir une ensemble de
colonnes flexibles regroupées en familles.

Column-Family

B

Key-Value

Key Value
Key Value

Key Value

Key Value

A. Laatabi | ENSAM-Meknés | 2025/2026

Graph

DRELA

EB

source : reliasoftware =

Document

>.....

NoSQL : Clé-valeur

- Stocke les données dans des collections. Une clé unique permet d'identifier un enregistrement

composé d’'une ou plusieurs valeurs.
Clé : texte unique.
Valeur : nombre, texte, binaire, liste, dictionnaire, ...

- Enregistrements avec des structures différentes et des données de types variés : pas de schéma
— Flexibilité.

- Lesvaleurs peuvent étre des objets simples (texte, entier, ...) ou complexes (tableau, image, objet
JSON, ...).

- Le SGBD ne s'intéresse pas a la structure interne de la valeur : il la stocke comme un bloc opaque,
et c'est au développeur de la traiter.

- Pasdejointures: toutes les informations nécessaires sont stockées dans la valeur.

- Scalabilité horizontale facile : partitionnement rapide des données entre les noeuds.
- Opérations de base simples : SET (clé, valeur), GET (clé), DEL (clé).

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Clé-valeur

- Les clés sont ordonnées (alphabétiquement, chronologiquement, par taille de la valeur, ...) afin de
fFaciliter les traitements (acces) et le sharding (A-D : serveur 1; E-K : serveur 2; ...).
- Uneclé peut étre composite avec:
- Une clé de partition (hash key) déterminant le nceud de stockage.
- Une clé de tri (sort ou range key) : détermine l'emplacement de la donné dans le nceud.
- Utile pour les usages en temps réel : stockage de sessions, données de cache, applications
e-commerce, ...

Keys Values

Composite Primary Key

g I Hash Key Sort Key
E—} {"name": "Michat", "Age": "31"}
\
-
E—} "Lorem ipsum dolor sit amet"
(-
&
E—} { "name": "Marlon Brando", "Profession": "Actor"}
"
-~
-

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Documents

e Les données sont stockées dans des collections de documents composés d'imbrications de paires
clé-valeur.

e Un document possede un identifiant unique et peut contenir des champs différents d'un autre document
de la méme collection.

e Les documents sont généralement au format JSON, BSON (JSON binaire), ou XML.

Les applications peuvent créer et manipuler facilement des documents JSON, directement stockables.
JSON permet de représenter les objets manipulés dans les applications POO.
o Clé-valeur: {"mois": 10}. // les clés sont toujours des string

o Tableau: {"mois": ['octobre","novembre"]}.
o Objet: {"DateDeNaissance": {"Jour": 20,"Mois": "Juin","Année":"2020"}}.

Le documents JSON peuvent imbriquer librement des éléments et évoluer de maniere flexible.
Des APIs permettent d'effectuer les opérations de base sur les documents : création, lecture, MAJ, et
suppression (CRUD: Create, Read, Update, Delete).

10
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Documents

e Utiles pour la gestion de contenu, ou chaque entité (produit, catalogue, ...)

est stockée dans un document.

e Chaque document peut évoluer en structure indépendamment des autres.

'Mary' ‘Jones' '516-555-2048' 'Long Island’ 1986 -73.9876" '40.7574'
10 1 'Developer’
11 1 'Engineer’
20 1 ‘MyApp' 1.0.4
21 1 'DocFinder’ 257
30 1 ‘Bentley’ 1973
31 1 'Rolls Royce' 1965

MongoDB

first_name: "Mary",
last_name: "Jones”,
cell: "516-555-2048",
city: "Long Island",
year_of_birth: 1986,
location: {

type: "Point",

coordinates: [-73.9876, 40.7574]

b
profession: ["Developer”, "Engineer”],
apps: |
{ name: "MyApp",
version: 1.0.4 },
{ name: "DocFinder",
version: 2.5.7 }
1
cars: [
{ make: "Bentley",
year: 1973 },
{ make: "Rolls Royce",
year: 1965 }
]

Key Document

101

{

“Ite

b
{

“Ite

1,

“ID”: “1001”,
“ItemsOrdered”:[

miID”: “1”,

“Quantity”: “2”,
“cost”: “1000”,

miD”: “1001”,

“Quantity”: “2”,
“cost”: “1000”,

“OrderDate”: “05/11/2019”

102

“co

“ID”: “1002”",
“ItemsOrdered”:[

“ItemID”: “2890",
“Quantity”: “11”,

t”: “10000%,

[SQL Terms/Concepts

| database

......... | database |

tables

[MongoDB Terms/Concepts]

erDate”: “05/11/2019”

| collections |
documents (BSON)
I

A. Laatabi | ENSAM-Meknés | 2025/2026

11

NoSQL : JSON

JSON (JavaScript Object Notation) : format texte dérivé de la syntaxe des objets JavaScript.
Comparable 3 XML : lisible, hiérarchique et Facile a analyser (parser).

o JSON est plus léger que XML et prend en charge les listes (tableaux).

o Pas de commentaires en JSON.

e Paires de clé-valeurs — "Nom":"mon_nom"

Objet JSON {} peut contenir plusieurs paires — {"Nom":"mon_nom", "prenom":null, "age":40}
Liste JSON [] peut contenir plusieurs objets :

{"etudiants": [{"Nom":"mon_nom", "age":40}, {"Nom":"my_name", "age":21}]}

Types : string, nombre, booléen, liste, objet JSON, null.
Un document JSON doit avoir une racine unique : un objet {} ou un tableau [].

A. Laatabi | ENSAM-Meknés | 2025/2026

12

NoSQL : SQL

On souhaite modéliser un réseau d’'amis de type Facebook dans une base de données relationnelle.
Chaque utilisateur posséde :

e unidentifiant unique,

e unnom,

e unprénom,

e une date de naissance.

On veut aussi stocker le type et la date de début de chaque amitié.
On désire connaitre par exemple :
e le nombre d’amis en commun pour chaque paire d'amis.

e laliste des amis d'amis d'un utilisateur.

— Proposer un schéma relationnel pour représenter ces informations.
— Expliquer les limites de ce modele dans un contexte de grande échelle (réseau social réel).

13
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : SQL

e Le nombre d’amis en commun entre l'utilisateur 173 et l'utilisateur 1991 :
SELECT COUNT(*) AS nb_amis_communs
FROM Amitie a1
JOIN Amitie a2 ON a1.id_user2 = a2.id_user2
WHERE a1.id_user1 =173 AND a2.id_user1 =1991;

SELECT COUNT(*) AS nb_amis_communs

FROM Amitie

WHERE id_user1 =173 AND id_user2 IN

(SELECT id_user2 FROM Amitie WHERE id_user1 =1991);

e Laliste des amis d’amis de l'utilisateur 173 :

SELECT DISTINCT u2.*

FROM Amitie a1

JOIN Amitie a2 ON a1.id_user2 = a2.id_user1
JOIN Utilisateur u2 ON u2.id_user = a2.id_user2
WHERE a1.id_user1 =173 AND u2.id_user <> 173;

A. Laatabi | ENSAM-Meknés | 2025/2026

Requétes lentes et difficiles a lire et
a expliquer,

Dans cet exemple, on stocke une
amitié deux fois — cela simplifie les
requétes mais augmente (‘espace de

stockage.

14

NoSQL : Graphes

e Utiles pour le stockage de données connectées en
utilisant un réseau de nceuds et de relations.

e Les noeuds ont des labels spécifiant leur type et peuvent
contenir un grand nombre de propriétés.

e Le type, la direction, et la force du lien entre deux
nceuds sont également des données.

e LaBD est manipulée en naviguant dans le graphe.

Le schéma et la structure peuvent évoluer.
Des langages de requétes et des algorithmes de graphes
permettent de manipuler efficacement les données.

e Les BD orientées graphes sont difficilement scalables a
cause de l'interconnexion des données.

bl Person
name: Bod Moeyer

age: 27
wa . make

UVES N

Bbel: Oty
name: Hattord
state: C7
aptal Yes
UVES N

Lbel: Oty
» name: Kamford
state: CT
MARRAGE
Date: §/2/2018
Place: New York, NY
<
Label: Porson
name: Ondy Moyer
e 26
e fomale
DAUGHTER OF BROTHER OF

bed: Oty
name: Rye Plains -
state: NY .
UVES N
Bbel: Porzon
name: PatSmith

age: 55

Labed: Person
name: Jett Carr
age: 30

A. Laatabi | ENSAM-Meknés | 2025/2026

15

NoSQL : Colonnes larges

Le schéma n'est pas fixe :
o De nouvelles colonnes peuvent étre ajoutées dynamiquement.

o Leslignes peuvent comporter un nombre, un type, et des noms de colonnes différents.

Les BD en colonnes larges se concentrent sur la notion de colonnes (les BD relationnelles : les lignes).

e Leregroupement de colonnes (Famille de colonnes) permet d'optimiser les requétes en ne chargeant que

les colonnes nécessaires : les colonnes en famille sont stockées ensemble.

e Lastructure en colonnes: plus de Flexibilité et de scalabilité.

partition key ~ columns ...
\

email

e Idéales pour les requétes analytiques:

name

tel

otto

12345

name

tel

tel2

o utilisant des agrégations et des filtres. ab@c.to
o analysant de grandes quantités de données. o
e Les BD relationnelles sont plus adaptées aux —

karl

6789

12233

requétes transactionnelles normalisées.
name

linda

i

A. Laatabi | ENSAM-Meknés | 2025/2026

16

NoSQL : au-dela des limites du relationnel

Scalabilité horizontale:

- Lerelationnel est plus adapté a la scalabilité verticale.

- Les BDR réparties (réplication, fragmentation horizontale ou verticale) souffrent de problemes de
synchronisation pour maintenir la consistance et la cohérence (ACID, 2PC : Two Phase Commit) et
de latence pour reconstruire la requéte d'origine (UNION, JOIN) de facon transparente.

- Le NoSQL adopte une consistance éventuelle — meilleure scalabilité horizontale.

- Le NoSQL utilise le sharding (sans coordination globale) — meilleure scalabilité horizontale.

—_—

2. Rigidité du schéma : modifier le schéma dans le relationnel est complexe. Le NoSQL n'a pas de schéma
prédéfini (ou schéma flexible), et s'adapte donc aux données.

3. Données hiérarchiques ou non structurées : ces types de données sont compliqués a stocker dans le
relationnel. Le NoSQL (JSON, graphes) est plus adapté aux données imbriquées ou connectées.

4. Tolérance aux pannes : le relationnel distribué préfere rendre les données indisponibles pour préserver
la cohérence (CP). Le NoSQL est plutot AP.

A. Laatabi | ENSAM-Meknés | 2025/2026

17

NoSQL : Redis

- Redis (Remote Dictionary Server) est une BD NoSQL en mémoire, de type clé-valeur.

- Utilisé principalement pour le temps réel et le caching : accés trés rapide en lecture et
écriture.

- Options de durabilité (cache) et de persistance sur disque (sauvegarder et restaurer).

- Redis permetde:
- trier et indexer automatiquement certaines données pour accélérer les acces.
- traiter des requétes regroupées pour améliorer la rapidité et réduire la charge réseau.
- échanger des messages entre applications qui produisent (publishers) et qui
consomment (subscribers) a travers des canaux de messagerie.
- servir de cache pour des BD sur disque, par exemple MongoDB, afin de réduire les
temps de lecture.

- Etant entiérement en mémoire, Redis peut ne pas étre adaptée au Big Data si la mémoire
est limitée ou en 'absence de sharding.

18
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Redis

- Créer un RediSearch index : FT.CREATE idx:bicycle ON JSON ...
- Ajouter les éléments JSON : JSON.SET "bicycle:0" "." {...}.

- (SQL) SELECT * FROM bicycles WHERE price >= 1000
- (Redis) FT.SEARCH idx:bicycle "@price:[1000 +inf]"

- (SQL) SELECT id, price FROM bicycles
- (Redis) FT.SEARCH idx:bicycle "*" RETURN 2 _ key, price

- (SQL) SELECT id, price-price*0.1 AS discounted FROM bicycles
- (Redis) FT.AGGREGATE idx:bicycle "*" LOAD 2 _ key price
APPLY "@price-@price*0.1" AS discounted

- (SQL) SELECT condition, AVG(price) AS avg _price FROM
bicycles GROUP BY condition

- (Redis) FT.AGGREGATE idx:bicycle "*" GROUPBY 1 @condition
REDUCE AVG 1 @price AS avg_price

"bicycle:0"
“pickup_zone": "POLYGON((-74.0610 40.7578, -73.9510 40.7578, -73.9510 40.6678,
-74.0610 40.6678, -74.061@ 40.7578))"

"store_location": "-74.0060,40.7128"

"brand": "Velorim"

“model": "Jigger"

"price": 270

"description”: "Small and powerful, the Jigger is the best ride for the

smallest of tikes! This is the tiniest kids’ pedal bike on the market
available without a coaster brake, the Jigger is the vehicle of choice for
the rare tenacious little rider raring to go."

"condition": "new"

"bicycle:1"

"pickup_zone": "POLYGON((-118.2887 34.8972, -118.1987 34.0972, -118.1987
33.9872, -118.2887 33.9872, -118.2887 34.0972))"

"store_location": "-118.2437,34.0522"

“brand": "Bicyk"

"model": "Hillcraft"

"price": 1200

“description”: "Kids want to ride with as little weight as possible.
Especially on an incline! They may be at the age when a 27.5\" wheel bike is
just too clumsy coming off a 24\" bike. The Hillcraft 26 is just the
solution they need!"

"condition": "used"

19

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : Redis

Python offre une librairie redis-py qui permet d'interagir avec Redis.

r = redis.Redis(host="localhost',port=6379,db=0)
- r.set("cle1", "premiere valeur")
- valeur1 =r.get("cle1")
- r.delete("cle1")

r.ft("idx:bicycle").create_index(fields=[....], prefix=["bicycle:"])

- req1 =r.fe("idx:bicycle").search("@price:[1000 +inf|")
- req2 = r.fe("idx:bicycle").search("* RETURN 2 key price")

- req3 =r.fe("idx:bicycle").aggregate("*").load("__key", "price").apply("@price-@price*0.1", "discounted")
- reqg4 =r.fe("idx:bicycle").aggregate("*").group_by("@condition",reducers={"avg_price": ("AVG", "@price")})

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL/SQL : Index

CREATE INDEX nom_index ON nom_table (NomColonne1, NomColonne2, ...);

- Unindex est une structure de données créée sur une ou plusieurs colonnes (triées) d'une table.
- Lindexation est aussi appliquée a des clés ou a des champs JSON.

- Il permet d’optimiser les requétes (WHERE, GROUP BY, ORDER BY):
- Accélérer les recherches et les tris : localiser rapidement les données dans la table sans la
parcourir entierement (éviter le full table scan ou sequential scan).
- Lindex d'un livre (le catalogue) : sur quelles pages (lignes) se trouve le terme (la donnée) X.

- Les SGBD créent automatiquement un index sur toute clé primaire.
- Lindex ralentit les opérations d'écriture : il doit étre mis-a-jour a chaque modification des
données.
- Lesindex consomment l'espace de stockage.
- Lindex créé une autre structure de données (le B-Tree) contenant les colonnes indexées.

21
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL/SQL : B-Tree

- Balanced-Tree : arbre de recherche équilibré, ou chaque noeud peut contenir plusieurs clés ordonnées et
des pointeurs vers les sous-arbres (arbre moins profond).
- Les données stockées dans les feuilles sont triées en ordre croissant.
- Tous les chemins de la racine aux feuilles ont la méme longueur (feuilles au méme niveau).
- Opérations en O(log n) : acces rapide qui minimise les acces disque.
- Les feuilles sont en liste chainée (simple ou double) pour des parcours ordonnés sans remonter.

- Etudiant (Nom, Prenom, ID)
- Oncrée unindexsur la colonne “Nom”.

Alanzo 0xAA34

source : simplesqltutorials Earlon %qulggi
ore X

Rhone 0x889C

Alanzo Jeff 100 Carlon Sara 105 Lore Paul 135 Rhone Tina 130

Bell Amy 145 |—m{Cutter Kim 120} —pd Mills Max 155p—m Smith nge 150
Bridge Marla 110 [#—|Faun Jack 140p4—|Mint Sally 170 Tanner Bill 115
Bucks Andy 125 Grim Dee 165 Nye Tom 175 Wit Bri 160

0xAA34 0xBBC2 0x765A 0x889C

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

e MongoDB est une BD open-source basée sur les documents au format JSON-like, stockés en BSON
(Binary JSON).
o BSON est plus rapide a lire et a écrire.
o BSON Prend en charge des types supplémentaires : Objectld, Date, Binary, ...

Un enregistrement dans MongoDB est appelé document. Les documents sont regroupés en collections.
Pour chaque document, MongoDB crée automatiquement un champ “_id” de type Objectld si aucun
champs “ _id"” n'est spécifié.

e Leserveur MongoDB:
o Se charge de la traduction JSON/BSON a chaque interaction avec l'utilisateur.
o Peut étre installé localement (Community Server) ou utilisé via le service cloud MongoDB Atlas.
MongoDB Compass offre une interface graphique pour interagir avec le serveur.
On peut également utiliser l'invite de commandes mongosh.

A. Laatabi | ENSAM-Meknés | 2025/2026

23

NoSQL : MongoDB

‘ "bicycle:0": {
"pickup_zone": "POLYGON((-74.0610 406.7578, -73.9510 40.7578, -73.9510 40.6678,
-74.0610 40.6678, -74.0610 40.7578))",

"store_location": "-74.0060,40.7128",
"brand”: "Velorim",

"model”: "Jigger",

"price": 270,

"description”: "Small and powerful, the Jigger is the best ride for the
smallest of tikes! This is the tiniest kids’ pedal bike on the market
available without a coaster brake, the Jigger is the vehicle of choice for
the rare tenacious little rider raring to go.",

"condition": "new
"bicycle:1": {

"pickup_zone": "POLYGON((-118.2887 34.0972, -118.1987 34.0972, -118.1987
33.9872, -118.2887 33.9872, -118.2887 34.0972))",

"store_location": "-118.2437,34.8522",

"brand”: "Bicyk",

"model™: “"Hillcraft",

"price": 1200,

"description”: "Kids want to ride with as little weight as possible.
Especially on an incline! They may be at the age when a 27.5\" wheel bike is
just too clumsy coming off a 24\" bike. The Hillcraft 26 is just the
solution they need!",

"condition": "used"

A. Laatabi | ENSAM-Meknés | 2025/2026

24

NoSQL : MongoDB

SELECT * FROM bicycles; < db.bicycles.find()
SELECT * FROM bicycles LIMIT 5; ¢ db.bicycles.find().limit(5) ¢ db.bicycles.aggregate([{"Slimit": 5}])
SELECT * FROM bicycles WHERE price > 500; <> db.bicycles.find({ price: { $gt: 500 } })
SELECT COUNT(*) FROM bicycles; <
db.bicycles.countDocuments() ¢ db.bicycles.aggregate([{ Scount: "total" }])
e SELECT condition, AVG(price) FROM bicycles GROUP BY condition; ¢
db.bicycles.aggregate([{ Sgroup: { _id: "$condition", avgPrice: { $avg: "$Sprice" } } }])
SELECT * FROM bicycles ORDER BY price DESC; ¢ db.bicycles.find().sort({ price:-11})
INSERT INTO bicycles (brand, price, condition) VALUES ('Vélo', 100, 'old"); &
db.bicycles.insertOne({ brand: "Vélo", price: 100, condition: "old" })
e UPDATE bicycles SET price = 150 WHERE brand ='Vélo'; &
db.bicycles.updateOne({ brand: "Vélo" }, { $set: { price: 150} })
DELETE FROM bicycles WHERE price < 200; ¢ db.bicycles.deleteMany({ price: { Slt: 200 }})
SELECT brand, COUNT(*) FROM bicycles GROUP BY brand HAVING COUNT(*) > 2; &
db.bicycles.aggregate([{ Sgroup: { _id: "Sbrand", total: { $sum: 1}}}, { Smatch: {total: {$gt:2}}}1])

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

use transports
db.createCollection("bicycles")
db.bicycles.insertOne({...})
db.bicycles.insertMany([{...}])

db["bicycles"].find({"condition" : "new"}) — db.bicycles.find({"condition" : "new"})
db.bicycles.FindOne({"condition" : "new"})

db.bicycles.Find({"condition": "new", "model": "Secto" })

db.bicycles.Find({"condition" : "new"}{"id_":1}) //le “id " est inclus par défaut dans find, "exclure avec :0
db.bicycles.Find({}, {"_id":0, "condition":1}) // exclure “id " et inclure “condition” seulement
db.bicycles.Find({}, {"_id":0, "condition":0}) // exclure “id_" et “condition” et inclure tout le reste
db.bicycles.Find({"condition" : "new"},{"_id":1}).sort({"price":1})

Opérateurs logiques : $and, $Sor, Snor, $Snot.
Opérateurs de comparaison : $eq, $ne, $gt, Sgte, Slt, Slte, Sin (une valeur dans une liste), $nin.

26
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

db.bicycles.updateOne({"condition": "refurbished"},{"$set": {"price": 815}})
db.bicycles.updateOne({"brand": "Vélo"}{
"$set": {"brand": "Vélo", "model": "Bicyclette", "price": 100, "condition": "old"}
}, {upsert: true})
db.bicycles.updateMany({"condition": "refurbished"},{"$set": {"price": 815}})
db.bicycles.updateMany({"condition": "refurbished"},{"$inc": {"price": 5}})
db.bicycles.updateOne({"condition": "refurbished"},{"Srename": {"price": "prix"}})

db.bicycles.updateMany({"condition": "used"},{"$unset": {"condition": ""}})

db.bicycles.deleteOne({"condition": "old"})
db.bicycles.deleteMany({"condition": "old"})

db.bicycles.find({"condition" : "new"}) — db.bicycles.find({"condition" : {"$Seq":"new"}})
db.bicycles.find({"condition" : {"Sne":"new"}})

27
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

db.bicycles.find({"condition" : {"$nin": ["new","used"]}}, {"brand":1})
db.bicycles.find({"condition" : {"Sin": ["new"]}, "price": {"$gt": 500} },
{"condition":1, "price": 1})
&
e db.bicycles.find({"Sand":
[{"condition": {"Sin":["new"]} }, {"price": {"$gt": 500} }]
}, {"condition":1, "price": 1})

9
O~
e db.bicycles.find({"Snor": 9
[{"condition": {"$in": ["new", "used"]}}, { "price": {"slt": 500} }] \<75°
}, {"condition":1, "price": 1}) &

e db.bicycles.find({ "Sand": [é\\\
{"sor": [{"condition": "new"}, {"condition" : "used"}] }, (;0\@

{"price": {"$It": 500} }
1}, {"condition":1, "price™: 1})

28
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

e L'agrégation permet de transformer les documents d'une collection a travers un ensemble (liste [])

d’'étapes (pipeline) pour analyser et produire des données Ffiltrées, regroupées, et reformulées.
e Les étapes de l'agrégation sont ordonnées, et chacune travaille sur les données issues (outputs) de [’

étape précédente.
e Récupérer les documents (filtre) :

db.bicycles.aggregate ([{"$match": {"price":{"$gt": 500}}}])
// Plus léger : si l'on a pas besoin d’un pipeline d‘agrégation, il est préférable d'utiliser find()
¢ db.bicycles.find({"price": {"$Sgt":500}})

e Réaliser des regroupements par catégories:
db.bicycles.aggregate ([
{"Smatch": {"price":{"$gt": 500} } },
{"Sgroup":{ id:"Scondition", "prix_moyen": {"$Savg" : "S$Sprice"} }}
1)

e Ane pas confondre _id (lidentifiant d'un document) et _id (la clé du regroupement dans $group).

A. Laatabi | ENSAM-Meknés | 2025/2026

29

NoSQL : MongoDB

e Smatch utilise une logique de requétes classiques (comme find) : les noms de champs n'ont pas
besoin de $. Apres l'opérateur $group, il fFaut utiliser $ devant les noms des champs.

e db.bicycles.aggregate([{"$match": { "price": {"$gt": 500} }},
{"Sgroup":{ _id: "Scondition”, "prix_total": {"Ssum" : "$price"}}}1)

e db.bicycles.aggregate([{"$Sgroup": { __id: null, "prix_total": {"Ssum" : "$price"}}}1)

e Pour compter le nombre d'éléments par groupe, il ne faut pas utiliser $count :
db.bicycles.aggregate([{"Smatch": { "price": {"$gt": 500} }},
{"Sgroup": { _id: "Scondition", "nombre": {"Ssum"™:1}}}1)

e L'opérateur $Scount (ne prend pas d'arguments) est la derniere étape du pipeline, utilisée pour
compter le nombre total de documents en sortie d'une requéte:
db.bicycles.aggregate([{"Smatch": { "price": {"$gt": 500} }},
{"Scount": "total" }])

30
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

e db.bicycles.aggregate ([{ "Smatch": { "price":{"$gt": 500} } },
{"$group": { _id: "Scondition" }}]) // lister tous les valeurs distinctes du champ condition

e db.bicycles.aggregate ([{ "Smatch": { "price":{"$gt": 500} } },
{"Sgroup": { id:["Scondition","Smodel"]}}])

e db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{"$group": { _id: ["Scondition","Smodel"]}},
{"$Slimit": 3}])

e db.bicycles.aggregate ([{ "Smatch": {"price":{"$gt": 500} } },
{"$project": { "condition": 1, "price": 1 }}1) // méme projection que dans find()
&
db.bicycles.find({"price" : {"Sgt" : 500}}, {"condition": 1, "price" : 1})

A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

e db.bicycles.aggregate ([{ "Sproject": { "condition": 1, "price": 1}}])

e db.bicycles.aggregate ([{ "Smatch": { "price":{"$gt": 500} } },
{"Ssort": { "price™:-1}},{"Sproject": {"price™: 1} }])

e db.bicycles.aggregate ([{ "Smatch": {"price":{"$gt": 500} } },
{"Sgroup": {_id: "Scondition", "prix_moyen": {"$avg" : "Sprice" } }},
{"S$sort": { "prix_moyen":-1}}, {"$project": {"prix_moyen": 1} },
{"Slimit":2}])

e db.bicycles.aggregate ([{ "$addFields": { "my_cond": "Scondition"}}])

— L'ordre des opérations est important, car chaque étape agit uniquement sur les documents produits
par l'étape précédente. Placer un filtre ($match) au début du pipeline est donc recommandé pour réduire le
nombre de documents (si c'est possible !) sur lesquels les étapes suivantes vont opérer.

32
A. Laatabi | ENSAM-Meknés | 2025/2026

NoSQL : MongoDB

e L'opérateur Slookup permet de faire une jointure de type “left outer” avec une autre collection de la
méme base de données.

_id: Objectld('691218962069b716cfe57912")
condition : "used"
from : nom de l'autre collection. description : "déja utilisé"

localField et ForeignField : champs de la jointure. conditions
as : nom du champ qui contiendra le ou les
documents correspondants de ['autre collection.

_‘id: ObjectId('691218a82069b716cfe57913")
condition : "new"

description : "nouveau est non encore utilisée"

e db.bicycles.aggregate ([{"Slookup": {
from: "conditions”,
localField: "condition”, fForeignField: "condition”,
as: "la_condition"

H)

A. Laatabi | ENSAM-Meknés | 2025/2026

33

NoSQL : MongoDB

e Slookup renvoie le résultat sous forme de tableau (liste).
e Siun seul résultat est attendu, Sunwind permet de décomposer le tableau et récupérer directement
l'objet.

db.bicycles.aggregate ([{"Slookup": {
from: "conditions", localField: "condition", ForeignField: "condition", as: "la_condition" } },
{"Sunwind": "$la_condition" }, {"$limit": 1}])

db.bicycles.aggregate ([{"Slookup": {
From: "conditions", localField: "condition", ForeignField: "condition", as: "la_condition" } },
{"Sunwind": "$la_condition"}, {"$project" : {"la_condition.description": 1}])

e Plusieurs opérations $lookup peuvent étre combinées entre elles pour réaliser des jointures entre
plusieurs collections.

e Slookup peut étre combinée également avec les autres opérations du pipeline d'agrégation comme
Smatch, $project, $group, et $sort.

A. Laatabi | ENSAM-Meknés | 2025/2026

34

