
 XML et bases de données
NoSQL

Ahmed Laatabi
a●laatabi{at}umi●ac●ma

ENSAM - Meknès
2025-2026

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : bases de données

- Bases de données NoSQL (Not Only SQL, Not Only Relational) vs bases de données relationnelles (SQL, Relational).
- Certaines BD NoSQL peuvent aussi supporter SQL à travers des APIs.

- Stocker et extraire de grandes quantités de données, sans utiliser le paradigme table-association (lignes, colonnes, clés).
- Structure moins stricte -- donc plus flexible -- que celle des SGBDR.

- SGBDR : le schéma est défini et connu à l’avance.
- NoSQL : généralement, pas de schéma prédéfini (le schéma peut évoluer dynamiquement avec les données).

- Évolution accélérée par le besoin de gérer de grandes quantités de données “Big Data” distribuées et hétérogènes.
- Boom des réseaux sociaux, IA, applications web en temps réel (jeux, e-commerce, …).

- NoSQL n’a pas remplacé le modèle relationnel.
- Les SGBDR offrent plus de :

- Intégrité : contraintes fortes sur les données (anomalies, doublons).
- Entreprise, finance, RH, …

- Complexité : relations avancées et jointures entre tables.
- Approche hybride :

- Cohérence du modèle relationnel.
- Performance de NoSQL.

2

source : Gemini

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : bases de données

- Les BD NoSQL :
- Permettent des requêtes rapides mais simples.
- Idéales pour un stockage non structuré (text, images, …).

- Peuvent contenir des données structurées ou non, dans un même endroit.
- Schéma flexible qui varie en fonction des données.
- Rapidité, disponibilité, flexibilité et performance.

- Les propriétés ACID (modèle relationnel) d’une transaction ne sont pas prioritaires :
- Atomicité : une transaction est indivisible (exécutée complètement ou pas).
- Consistance : respect des contraintes d'intégrité après la validation d’une transaction.
- Isolation : les transactions concurrentes doivent être exécutées séquentiellement.
- Durabilité : une transaction validée est permanente.

→ Certaines bases de données NoSQL supportent quand même des caractéristiques ACID pour un

minimum de consistance, mais généralement : conformité ACID → SGBD relationnel.

3

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : BASE

- Le modèle BASE (Basically Available, Soft state, Eventually consistent) suit une philosophie différente :
- BA : l’écriture et la lecture des données sont toujours disponibles, sans garantie de consistance

(données non à jour). Les données sont disponibles grâce à la réplication sur plusieurs nœuds de la
BD. Un nœud peut livrer une donnée qui n’est pas à jour.

- S : pas de consistance stricte, la valeur d’une donnée peut changer au cours du temps (état
temporaire ou transitoire). Le SGBD délègue la consistance à la charge du développeur (traitements
externes).

- E : après un certain temps, la consistance des données sera quand même atteinte grâce à la
propagation des mises à jour en arrière-plan.

- Les conflits d’écriture sont résolus grâce à des mécanismes de synchronisation comme le Last-write-wins.
- Les noeuds échangent des informations (gossip) pour s’accorder sur une même donnée consistante.

→ Les données sensibles ne doivent pas être stockées en NoSQL.
→ Les données financières (paiements) nécessitent les propriétés ACID.

4

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : théorème CAP

● Le théorème CAP (théorème de Brewer) suggère qu’une source de données distribuée ne peut garantir
que deux des trois propriétés suivantes :

Consistency, Availability, and Partition tolerance

● Consistance (ou cohérence) : toutes les lectures reçoivent la même réponse (aucune donnée obsolète).
● Disponibilité : toutes les requêtes reçoivent une réponse (même en cas de panne partielle).
● Tolérance au partitionnement : disponibilité malgré des interruptions et des partitionnements du réseau.

○ Deux partitions du système ne peuvent pas communiquer (panne, problème réseau, …).

● ACID → CP
● BASE → AP
● Des bases de données CA n’existent pas en pratique !

○ Un SGBD distribué doit nécessairement gérer les pannes du réseau.

5

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : sharding

- Sharding (Évolution/scalabilité horizontale) : répartir les données sur plusieurs BD (machines) distantes.
- Extensibilité : de nouveaux serveurs (shards) peuvent être ajoutés pour gérer plus de données.
- Rapidité : améliore la performance en accélérant les requêtes de traitement des données.
- Disponibilité : réplication des données et tolérance aux pannes sur un shard.
- vs Scalabilité verticale : augmenter la capacité d’une même machine (CPU, RAM, stockage).

- Existe aussi dans le modèle relationnel, mais c’est plus une caractéristique native du modèle NoSQL.
- Sharding automatique dans les SGBD NoSQL lorsque la taille des données croît.

6

source : TidB

Le shard key est la clé
utilisée pour répartir les

données entre les shards.

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Types de BD

- Clé-valeur : les plus simples, stockage sous forme
de collections de paires clé-valeur.

- Orientée documents : stocke les données sous
forme de documents semi-structurés,
généralement au format XML ou JSON.

- Orientée graphes : organise les données sous
forme de nœuds connectés. Les relations entre les
nœuds stockent aussi des données. Idéal pour
représenter les données des réseaux complexes.

- Orientée colonnes : stocke les données dans des
tables, ou une ligne peut avoir une ensemble de
colonnes flexibles regroupées en familles.

7

source : reliasoftware

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Clé-valeur

- Stocke les données dans des collections. Une clé unique permet d’identifier un enregistrement
composé d’une ou plusieurs valeurs.

- Clé : texte unique.
- Valeur : nombre, texte, binaire, liste, dictionnaire, …

- Enregistrements avec des structures différentes et des données de types variés : pas de schéma
→ flexibilité.

- Les valeurs peuvent être des objets simples (texte, entier, …) ou complexes (tableau, image, objet
JSON, …).

- Le SGBD ne s'intéresse pas à la structure interne de la valeur : il la stocke comme un bloc opaque,
et c’est au développeur de la traiter.

- Pas de jointures : toutes les informations nécessaires sont stockées dans la valeur.

- Scalabilité horizontale facile : partitionnement rapide des données entre les noeuds.
- Opérations de base simples : SET (clé, valeur), GET (clé), DEL (clé).

8

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Clé-valeur

- Les clés sont ordonnées (alphabétiquement, chronologiquement, par taille de la valeur, …) afin de
faciliter les traitements (accès) et le sharding (A-D : serveur 1; E-K : serveur 2; …).

- Une clé peut être composite avec :
- Une clé de partition (hash key) déterminant le nœud de stockage.
- Une clé de tri (sort ou range key) : détermine l’emplacement de la donné dans le nœud.

- Utile pour les usages en temps réel : stockage de sessions, données de cache, applications
e-commerce, …

9

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Documents

● Les données sont stockées dans des collections de documents composés d’imbrications de paires
clé-valeur.

● Un document possède un identifiant unique et peut contenir des champs différents d’un autre document
de la même collection.

● Les documents sont généralement au format JSON, BSON (JSON binaire), ou XML.

● Les applications peuvent créer et manipuler facilement des documents JSON, directement stockables.
● JSON permet de représenter les objets manipulés dans les applications POO.

○ Clé-valeur : {"mois": 10}. // les clés sont toujours des string
○ Tableau : {"mois": ["octobre","novembre"]}.
○ Objet : {"DateDeNaissance": {"Jour": 20,"Mois": "Juin","Année":"2020"}}.

● Le documents JSON peuvent imbriquer librement des éléments et évoluer de manière flexible.
● Des APIs permettent d’effectuer les opérations de base sur les documents : création, lecture, MAJ, et

suppression (CRUD: Create, Read, Update, Delete).

10

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Documents

● Utiles pour la gestion de contenu, où chaque entité (produit, catalogue, …)
est stockée dans un document.

● Chaque document peut évoluer en structure indépendamment des autres.

11

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : JSON

● JSON (JavaScript Object Notation) : format texte dérivé de la syntaxe des objets JavaScript.
● Comparable à XML : lisible, hiérarchique et facile à analyser (parser).

○ JSON est plus léger que XML et prend en charge les listes (tableaux).
○ Pas de commentaires en JSON.

● Paires de clé-valeurs → "Nom":"mon_nom"

● Objet JSON {} peut contenir plusieurs paires → {"Nom":"mon_nom", "prenom":null, "age":40}
● Liste JSON [] peut contenir plusieurs objets :

{"etudiants": [{"Nom":"mon_nom", "age":40}, {"Nom":"my_name", "age":21}]}

● Types : string, nombre, booléen, liste, objet JSON, null.
● Un document JSON doit avoir une racine unique : un objet {} ou un tableau [].

12

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : SQL

On souhaite modéliser un réseau d’amis de type Facebook dans une base de données relationnelle.
Chaque utilisateur possède :

● un identifiant unique,
● un nom,
● un prénom,
● une date de naissance.

On veut aussi stocker le type et la date de début de chaque amitié.

On désire connaître par exemple :
● le nombre d’amis en commun pour chaque paire d’amis.
● la liste des amis d’amis d’un utilisateur.

→ Proposer un schéma relationnel pour représenter ces informations.
→ Expliquer les limites de ce modèle dans un contexte de grande échelle (réseau social réel).

13

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : SQL

● Le nombre d’amis en commun entre l’utilisateur 173 et l’utilisateur 1991 :
SELECT COUNT(*) AS nb_amis_communs
FROM Amitie a1
JOIN Amitie a2 ON a1.id_user2 = a2.id_user2
WHERE a1.id_user1 = 173 AND a2.id_user1 = 1991;

SELECT COUNT(*) AS nb_amis_communs
FROM Amitie
WHERE id_user1 = 173 AND id_user2 IN
(SELECT id_user2 FROM Amitie WHERE id_user1 = 1991);

● La liste des amis d’amis de l’utilisateur 173 :

SELECT DISTINCT u2.*
FROM Amitie a1
JOIN Amitie a2 ON a1.id_user2 = a2.id_user1
JOIN Utilisateur u2 ON u2.id_user = a2.id_user2
WHERE a1.id_user1 = 173 AND u2.id_user <> 173;

14

Requêtes lentes et difficiles à lire et
à expliquer.

Dans cet exemple, on stocke une
amitié deux fois → cela simplifie les
requêtes mais augmente l’espace de

stockage.

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Graphes

● Utiles pour le stockage de données connectées en
utilisant un réseau de nœuds et de relations.

● Les nœuds ont des labels spécifiant leur type et peuvent
contenir un grand nombre de propriétés.

● Le type, la direction, et la force du lien entre deux
nœuds sont également des données.

● La BD est manipulée en naviguant dans le graphe.

● Le schéma et la structure peuvent évoluer.
● Des langages de requêtes et des algorithmes de graphes

permettent de manipuler efficacement les données.

● Les BD orientées graphes sont difficilement scalables à
cause de l’interconnexion des données.

15

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Colonnes larges

● Les BD en colonnes larges se concentrent sur la notion de colonnes (les BD relationnelles : les lignes).
● Le schéma n’est pas fixe :

○ De nouvelles colonnes peuvent être ajoutées dynamiquement.
○ Les lignes peuvent comporter un nombre, un type, et des noms de colonnes différents.

● Le regroupement de colonnes (famille de colonnes) permet d’optimiser les requêtes en ne chargeant que
les colonnes nécessaires : les colonnes en famille sont stockées ensemble.

● La structure en colonnes : plus de flexibilité et de scalabilité.

● Idéales pour les requêtes analytiques :
○ utilisant des agrégations et des filtres.
○ analysant de grandes quantités de données.

● Les BD relationnelles sont plus adaptées aux
requêtes transactionnelles normalisées.

16

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : au-delà des limites du relationnel

1. Scalabilité horizontale:
- Le relationnel est plus adapté à la scalabilité verticale.
- Les BDR réparties (réplication, fragmentation horizontale ou verticale) souffrent de problèmes de

synchronisation pour maintenir la consistance et la cohérence (ACID, 2PC : Two Phase Commit) et
de latence pour reconstruire la requête d’origine (UNION, JOIN) de façon transparente.

- Le NoSQL adopte une consistance éventuelle → meilleure scalabilité horizontale.
- Le NoSQL utilise le sharding (sans coordination globale) → meilleure scalabilité horizontale.

2. Rigidité du schéma : modifier le schéma dans le relationnel est complexe. Le NoSQL n’a pas de schéma
prédéfini (ou schéma flexible), et s’adapte donc aux données.

3. Données hiérarchiques ou non structurées : ces types de données sont compliqués à stocker dans le
relationnel. Le NoSQL (JSON, graphes) est plus adapté aux données imbriquées ou connectées.

4. Tolérance aux pannes : le relationnel distribué préfère rendre les données indisponibles pour préserver
la cohérence (CP). Le NoSQL est plutôt AP.

17

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Redis

- Redis (Remote Dictionary Server) est une BD NoSQL en mémoire, de type clé-valeur.
- Utilisé principalement pour le temps réel et le caching : accès très rapide en lecture et

écriture.
- Options de durabilité (cache) et de persistance sur disque (sauvegarder et restaurer).

- Redis permet de :
- trier et indexer automatiquement certaines données pour accélérer les accès.
- traiter des requêtes regroupées pour améliorer la rapidité et réduire la charge réseau.
- échanger des messages entre applications qui produisent (publishers) et qui

consomment (subscribers) à travers des canaux de messagerie.
- servir de cache pour des BD sur disque, par exemple MongoDB, afin de réduire les

temps de lecture.

- Étant entièrement en mémoire, Redis peut ne pas être adaptée au Big Data si la mémoire
est limitée ou en l’absence de sharding.

18

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Redis

- Créer un RediSearch index : FT.CREATE idx:bicycle ON JSON …
- Ajouter les éléments JSON : JSON.SET "bicycle:0" "." {...}.

- (SQL) SELECT * FROM bicycles WHERE price >= 1000
- (Redis) FT.SEARCH idx:bicycle "@price:[1000 +inf]"

- (SQL) SELECT id, price FROM bicycles
- (Redis) FT.SEARCH idx:bicycle "*" RETURN 2 __key, price

- (SQL) SELECT id, price-price*0.1 AS discounted FROM bicycles
- (Redis) FT.AGGREGATE idx:bicycle "*" LOAD 2 __key price

APPLY "@price-@price*0.1" AS discounted

- (SQL) SELECT condition, AVG(price) AS avg_price FROM
bicycles GROUP BY condition

- (Redis) FT.AGGREGATE idx:bicycle "*" GROUPBY 1 @condition
REDUCE AVG 1 @price AS avg_price

19

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : Redis

Python offre une librairie redis-py qui permet d'interagir avec Redis.

r = redis.Redis(host='localhost',port=6379,db=0)

- r.set("cle1", "première valeur")
- valeur1 = r.get("cle1")
- r.delete("cle1")

r.ft("idx:bicycle").create_index(fields=[....], prefix=["bicycle:"])

- req1 = r.ft("idx:bicycle").search("@price:[1000 +inf]")
- req2 = r.ft("idx:bicycle").search("* RETURN 2 __key price")
- req3 = r.ft("idx:bicycle").aggregate("*").load("__key", "price").apply("@price-@price*0.1", "discounted")
- req4 = r.ft("idx:bicycle").aggregate("*").group_by("@condition",reducers={"avg_price": ("AVG", "@price")})

20

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL/SQL : Index

CREATE INDEX nom_index ON nom_table (NomColonne1, NomColonne2, ...);

- Un index est une structure de données créée sur une ou plusieurs colonnes (triées) d’une table.
- L’indexation est aussi appliquée à des clés ou à des champs JSON.

- Il permet d’optimiser les requêtes (WHERE, GROUP BY, ORDER BY):
- Accélérer les recherches et les tris : localiser rapidement les données dans la table sans la

parcourir entièrement (éviter le full table scan ou sequential scan).
- L’index d’un livre (le catalogue) : sur quelles pages (lignes) se trouve le terme (la donnée) X.

- Les SGBD créent automatiquement un index sur toute clé primaire.
- L’index ralentit les opérations d’écriture : il doit être mis-à-jour à chaque modification des

données.
- Les index consomment l’espace de stockage.

- L’index créé une autre structure de données (le B-Tree) contenant les colonnes indexées.

21

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL/SQL : B-Tree

- Balanced-Tree : arbre de recherche équilibré, où chaque noeud peut contenir plusieurs clés ordonnées et
des pointeurs vers les sous-arbres (arbre moins profond).

- Les données stockées dans les feuilles sont triées en ordre croissant.
- Tous les chemins de la racine aux feuilles ont la même longueur (feuilles au même niveau).
- Opérations en O(log n) : accès rapide qui minimise les accès disque.
- Les feuilles sont en liste chaînée (simple ou double) pour des parcours ordonnés sans remonter.

- Etudiant (Nom, Prenom, ID)
- On crée un index sur la colonne “Nom”.

22

source : simplesqltutorials

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● MongoDB est une BD open-source basée sur les documents au format JSON-like, stockés en BSON
(Binary JSON).

○ BSON est plus rapide à lire et à écrire.
○ BSON Prend en charge des types supplémentaires : ObjectId, Date, Binary, …

● Un enregistrement dans MongoDB est appelé document. Les documents sont regroupés en collections.
● Pour chaque document, MongoDB crée automatiquement un champ “_id” de type ObjectId si aucun

champs “_id” n’est spécifié.

● Le serveur MongoDB :
○ Se charge de la traduction JSON/BSON à chaque interaction avec l’utilisateur.
○ Peut être installé localement (Community Server) ou utilisé via le service cloud MongoDB Atlas.

● MongoDB Compass offre une interface graphique pour interagir avec le serveur.
● On peut également utiliser l’invite de commandes mongosh.

23

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

24

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● SELECT * FROM bicycles; ⇔ db.bicycles.find()
● SELECT * FROM bicycles LIMIT 5; ⇔ db.bicycles.find().limit(5) ⇔ db.bicycles.aggregate([{"$limit": 5}])
● SELECT * FROM bicycles WHERE price > 500; ⇔ db.bicycles.find({ price: { $gt: 500 } })
● SELECT COUNT(*) FROM bicycles; ⇔

db.bicycles.countDocuments() ⇔ db.bicycles.aggregate([{ $count: "total" }])
● SELECT condition, AVG(price) FROM bicycles GROUP BY condition; ⇔

db.bicycles.aggregate([{ $group: { _id: "$condition", avgPrice: { $avg: "$price" } } }])
● SELECT * FROM bicycles ORDER BY price DESC; ⇔ db.bicycles.find().sort({ price: -1 })
● INSERT INTO bicycles (brand, price, condition) VALUES ('Vélo', 100, 'old'); ⇔

db.bicycles.insertOne({ brand: "Vélo", price: 100, condition: "old" })
● UPDATE bicycles SET price = 150 WHERE brand = 'Vélo'; ⇔

db.bicycles.updateOne({ brand: "Vélo" }, { $set: { price: 150 } })
● DELETE FROM bicycles WHERE price < 200; ⇔ db.bicycles.deleteMany({ price: { $lt: 200 } })
● SELECT brand, COUNT(*) FROM bicycles GROUP BY brand HAVING COUNT(*) > 2; ⇔

db.bicycles.aggregate([{ $group: { _id: "$brand", total: { $sum: 1 } } }, { $match: { total: { $gt: 2 } } }])

25

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● use transports
● db.createCollection("bicycles")
● db.bicycles.insertOne({...})
● db.bicycles.insertMany([{...}])

● db["bicycles"].find({"condition" : "new"}) → db.bicycles.find({"condition" : "new"})
● db.bicycles.findOne({"condition" : "new"})
● db.bicycles.find({"condition": "new", "model": "Secto" })
● db.bicycles.find({"condition" : "new"},{"id_":1}) // le “id_” est inclus par défaut dans find, l’exclure avec :0
● db.bicycles.find({}, {"_id":0, "condition":1}) // exclure “id_” et inclure “condition” seulement
● db.bicycles.find({}, {"_id":0, "condition":0}) // exclure “id_” et “condition” et inclure tout le reste
● db.bicycles.find({"condition" : "new"},{"_id":1}).sort({"price":1})

● Opérateurs logiques : $and, $or, $nor, $not.
● Opérateurs de comparaison : $eq, $ne, $gt, $gte, $lt, $lte, $in (une valeur dans une liste), $nin.

26

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● db.bicycles.updateOne({"condition": "refurbished"},{"$set": {"price": 815}})
● db.bicycles.updateOne({"brand": "Vélo"},{

"$set": {"brand": "Vélo", "model": "Bicyclette", "price": 100, "condition": "old"}
}, {upsert: true})

● db.bicycles.updateMany({"condition": "refurbished"},{"$set": {"price": 815}})
● db.bicycles.updateMany({"condition": "refurbished"},{"$inc": {"price": 5}})
● db.bicycles.updateOne({"condition": "refurbished"},{"$rename": {"price": "prix"}})
● db.bicycles.updateMany({"condition": "used"},{"$unset": {"condition": ""}})

● db.bicycles.deleteOne({"condition": "old"})
● db.bicycles.deleteMany({"condition": "old"})

● db.bicycles.find({"condition" : "new"}) → db.bicycles.find({"condition" : {"$eq":"new"}})
● db.bicycles.find({"condition" : {"$ne":"new"}})

27

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● db.bicycles.find({"condition" : {"$nin": ["new","used"]}}, {"brand":1})
● db.bicycles.find({"condition" : {"$in": ["new"]}, "price": {"$gt": 500} },

{"condition":1, "price": 1})
⇔

● db.bicycles.find({ "$and":
[{ "condition" : {"$in": ["new"]} } , { "price": {"$gt": 500} }]

 }, {"condition":1, "price": 1})

● db.bicycles.find({ "$nor":
[{ "condition" : {"$in": ["new", "used"]} } , { "price": {"$lt": 500} }]

 }, {"condition":1, "price": 1})
● db.bicycles.find({ "$and" : [

{ "$or": [{"condition" : "new"}, {"condition" : "used"}] },
{ "price": {"$lt": 500} }
] }, {"condition":1, "price": 1})

28

Si
m

pl
ifie

r l
es

 re
qu

êt
es

 ?

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● L'agrégation permet de transformer les documents d’une collection à travers un ensemble (liste [])
d’étapes (pipeline) pour analyser et produire des données filtrées, regroupées, et reformulées.

● Les étapes de l'agrégation sont ordonnées, et chacune travaille sur les données issues (outputs) de l’
étape précédente.

● Récupérer les documents (filtre) :
db.bicycles.aggregate ([{"$match": {"price":{"$gt": 500}}}])

// Plus léger : si l’on a pas besoin d’un pipeline d’agrégation, il est préférable d’utiliser find()
⇔ db.bicycles.find({"price": {"$gt":500}})

● Réaliser des regroupements par catégories :
db.bicycles.aggregate ([

{ "$match": { "price":{"$gt": 500} } },
{ "$group": { _id : "$condition" , "prix_moyen": {"$avg" : "$price"} } }

])
● À ne pas confondre _id (l’identifiant d’un document) et _id (la clé du regroupement dans $group).

29

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● $match utilise une logique de requêtes classiques (comme find) : les noms de champs n’ont pas
besoin de $. Après l’opérateur $group, il faut utiliser $ devant les noms des champs.

● db.bicycles.aggregate([{ "$match": { "price": { "$gt": 500 } } },
 { "$group": { _id: "$condition", "prix_total": {"$sum" : "$price" } } }])

● db.bicycles.aggregate([{ "$group": { _id: null, "prix_total": {"$sum" : "$price" } } }])

● Pour compter le nombre d’éléments par groupe, il ne faut pas utiliser $count :
db.bicycles.aggregate([{ "$match": { "price": { "$gt": 500 } } },

 { "$group": { _id: "$condition", "nombre": { "$sum": 1 } } }])

● L’opérateur $count (ne prend pas d’arguments) est la dernière étape du pipeline, utilisée pour
compter le nombre total de documents en sortie d’une requête :

db.bicycles.aggregate([{ "$match": { "price": { "$gt": 500 } } },
 { "$count": "total" }])

30

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$group": { _id : "$condition" } }]) // lister tous les valeurs distinctes du champ condition

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$group": { _id : ["$condition","$model"] } }])

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$group": { _id : ["$condition","$model"]} },
{"$limit": 3}])

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$project": { "condition": 1, "price": 1 } }]) // même projection que dans find()

⇔

db.bicycles.find({"price" : {"$gt" : 500}}, {"condition" : 1, "price" : 1})

31

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● db.bicycles.aggregate ([{ "$project": { "condition": 1, "price": 1 } }])

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$sort": { "price": -1 } } , { "$project": {"price": 1} }])

● db.bicycles.aggregate ([{ "$match": { "price":{"$gt": 500} } },
{ "$group": {_id: "$condition", "prix_moyen": {"$avg" : "$price" } } },
{ "$sort": { "prix_moyen": -1 } } , { "$project": {"prix_moyen": 1} } ,
{ "$limit": 2 }])

● db.bicycles.aggregate ([{ "$addFields": { "my_cond": "$condition"} }])

→ L’ordre des opérations est important, car chaque étape agit uniquement sur les documents produits
par l’étape précédente. Placer un filtre ($match) au début du pipeline est donc recommandé pour réduire le
nombre de documents (si c’est possible !) sur lesquels les étapes suivantes vont opérer.

32

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● L’opérateur $lookup permet de faire une jointure de type “left outer” avec une autre collection de la
même base de données.

● from : nom de l’autre collection.
● localField et foreignField : champs de la jointure.
● as : nom du champ qui contiendra le ou les

documents correspondants de l’autre collection.

● db.bicycles.aggregate ([{"$lookup": {
 from: "conditions",
 localField: "condition", foreignField: "condition",
 as: "la_condition"

} }])

33

conditions

A. Laatabi | ENSAM-Meknès | 2025/2026

NoSQL : MongoDB

● $lookup renvoie le résultat sous forme de tableau (liste).
● Si un seul résultat est attendu, $unwind permet de décomposer le tableau et récupérer directement

l’objet.

db.bicycles.aggregate ([{"$lookup": {
 from: "conditions", localField: "condition", foreignField: "condition", as: "la_condition" } },

{ "$unwind": "$la_condition" }, {"$limit": 1}])

db.bicycles.aggregate ([{"$lookup": {
 from: "conditions", localField: "condition", foreignField: "condition", as: "la_condition" } },

{ "$unwind": "$la_condition" }, {"$project" : {"la_condition.description" : 1}])

● Plusieurs opérations $lookup peuvent être combinées entre elles pour réaliser des jointures entre
plusieurs collections.

● $lookup peut être combinée également avec les autres opérations du pipeline d'agrégation comme
$match, $project, $group, et $sort.

34

