
JOBINTECH
Architecture logicielle

Ahmed Laatabi
a●laatabi{at}umi●ac●ma

ENSAM - Meknès
2025-2026

Logiciel
• Un logiciel (software) est un ensemble de programmes, de données, et de règles qui permettent à un

appareil informatique (ordinateur, smartphone, …) de fonctionner et d'exécuter des tâches
spécifiques. Il se compose d'une suite d'instructions (code), écrites dans un langage de
programmation, qui implémentent un ou plusieurs algorithmes.

• Le matériel (hardware) est l'ensemble des composants physiques et électroniques d'un système
informatique (carte mère, disque dur, …) qui sert de support et permet l'exécution des logiciels.

Système informatique = Software (immatériel) + Hardware (matériel).

• Le système informatique est l’une des composantes principales du système d’information (SI).

• Le SI est l’ensemble organisé de ressources matérielles, logicielles, humaines et organisationnelles
permettant la collecte, le stockage, le traitement et la diffusion de l’information (les données)
nécessaire au fonctionnement et à la prise de décision au sein d’une organisation.

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 2

Architecture logicielle

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 3

• L’architecture logicielle décrit, schématise et documente l’ensemble des éléments (ou composantes) d’un
système informatique ainsi que leurs interactions (ou relations) en termes d’échanges et d’entrées/sorties.

• Son objectif est de définir la structure, les modèles, et les solutions (technologies) nécessaires pour répondre
aux besoins du client et assurer la cohérence, la fiabilité, et l'évolutivité du système.

• Une bonne architecture logicielle doit garantir les qualités non fonctionnelles du système :
• Maintenabilité : facilité de corriger, modifier, ou faire évoluer le logiciel.
• Performance : rapidité et efficacité d'exécution.
• Scalabilité : capacité à s’adapter à une charge croissante de données et de trafic.
• Sécurité : protection des données et des processus.

• Les architectures logicielles modernes tendent à adopter une séparation en modules (ou couches) : 1)
interface utilisateur (couche de présentation); 2) processus métiers (couche logique); 3) persistance des
données (couche d’accès aux données).

Architecte logiciel

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 4

• L’architecte logiciel est le concepteur de haut niveau du système. Son rôle consiste à :

• Définir la structure globale et les principes de conception du logiciel :

• Choisir les technologies, les styles d'architecture (monolithique, microservices, ...), les
patterns (modèles de conception) et les normes à suivre.

• Coordonner entre les équipes non techniques (produit, direction) et les équipes
techniques (développement, test, déploiement).

• Garantir l'intégration et la cohérence entre les différents modules du logiciel, assurant
ainsi qu'il réponde aux besoins clients et au cahier des charges.

• Architecte logiciel : conçoit le plan stratégique du logiciel avant sa construction. Il produit
des documents et des diagrammes qui répondent au “quoi ?” (structure et règles).

• Ingénieur logiciel / Développeur : construit et implémente le logiciel en suivant ce plan. Il se
concentre sur le “comment ?” (algorithmes, codes, et implémentation).

Principes fondamentaux

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 5

• Principes structurels : qualités non fonctionnelles à maximiser.
• Séparation des préoccupations (separation of concerns) : le système est divisé en modules, chacun

ayant une responsabilité unique et bien définie. Les composantes du même module doivent être
fortement liées et cohérentes (high cohesion) → modularité et maintenabilité.

• Modularité : les modules qui composent le système sont indépendants et peuvent être
développés, testés et déployés de manière autonome et parallèle. Chaque module doit
encapsuler sa complexité, qui doit être abstraite aux interactions → évolutivité, interopérabilité
et réduction des coûts.

• Couplage Faible (low coupling) : les dépendances entre les modules doivent être minimales pour
éviter les erreurs inter-modules. chaque module doit pouvoir évoluer indépendamment afin de
faciliter les corrections ou l’ajout de nouvelles fonctionnalités → interopérabilité et scalabilité.

• Principes de conception (design principles) : règles à suivre pour répondre aux besoins fonctionnels.
• KISS (Keep It Simple & Stupid) : toujours privilégier la solution la plus simple qui fonctionne.
• DRY (Don't Repeat Yourself) : les données et les logiques ne doivent pas être dupliquées.
• YAGNI (You Aren't Gonna Need It) : éviter d’implémenter des données ou logiques inutiles.

SOLID

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 6

SOLID regroupe cinq principes de conception à suivre pour produire de bonnes architectures logicielles
(code compréhensible, flexible et maintenable), notamment en programmation orienté objet :

• Single responsibility (responsabilité unique) : une fonction ou une classe ne doit avoir qu’une seule
responsabilité (un seul rôle, objectif).

• Open/closed (ouvert/fermé) : une fonction ou une classe doit être fermée à la modification mais
ouverte à l'extension : ajout de nouvelles fonctionnalités sans modifier le code existant.

• Liskov substitution (substitution de Liskov) : une instance de type de base doit pouvoir être remplacée
par une instance de l’un de ses sous-types sans altérer le bon fonctionnement du programme. Les
sous-classes peuvent donc être utilisées de manière interchangeable avec leurs classes parentes.

• Interface segregation (ségrégation des interfaces) : préférer la définition de plusieurs interfaces
spécifiques plutôt qu'une seule interface générale. Ainsi, les classes ne dépendent que des méthodes
dont elles ont besoin, ce qui réduit les couplages inutiles.

• Dependency inversion (inversion des dépendances) : il faut dépendre des abstractions, pas des
implémentations (les modules de haut niveau ne doivent pas dépendre des modules de bas niveau,
mais tous deux doivent dépendre d’abstractions).

Responsabilité unique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 7

“A class should have only one reason to change”

- Une fonction permet de récupérer (depuis le
clavier) les informations d’un étudiant (CNE,
nom complet, date de naissance) puis de les
enregistrer dans une BD.

- Cette fonction a deux raisons de changer (car
elle a deux responsabilités distinctes) :

- Si l’on souhaite récupérer une donnée
supplémentaire (lieu de naissance).

- Si l’on souhaite modifier le mécanisme
d'enregistrement des données :

- MySQL → MongoDB.

?

Responsabilité unique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 8

• Le principe de responsabilité unique (SRP) exige
qu’un changement de nature n’affecte qu’une seule
composante.

• Ici, les deux fonctions dépendent directement de la
même structure de données (cne, nom_complet,
date_naissance, ...).

• Si la structure des données change → il faut
modifier les deux fonctions (violation du SRP).

• L’utilisation des fonctions simples, couplées
fortement aux détails de la structure de données,
limite l’implémentation correcte du principe de
responsabilité unique.

• Il faut que les deux fonctions dépendent d’une
interface ou d’abstraction commune (un objet), et
non directement de ses champs (structure interne).

?

Ouvert/fermé

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 9

• Une fois qu’une classe ou une fonction a été testée et validée, elle ne doit plus être modifiée,
mais seulement étendue pour ajouter de nouvelles fonctionnalités.

Substitution de Liskov

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 10

• Bonne utilisation de l'héritage : si G est un sous-type de T, alors tout objet de type T peut être
remplacé par un objet de type G sans altérer les propriétés désirables du programme.

→ les classes dérivées G ne doivent pas casser le code qui utilise les classes de base T.

POO

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 11

• L'héritage permet à une classe (classe fille,
classe dérivée, sous-classe) d'acquérir et
réutiliser les propriétés (attributs) et les
comportements (méthodes) d'une autre
classe (classe mère, classe de base,
super-classe), tout en ajoutant ou modifiant
des fonctionnalités : class Etudiant2
(Etudiant).

• Le polymorphisme (multiples formes)
permet de traiter des objets de types
différents via une interface unique : une
même méthode peut se comporter
différemment selon l’objet sur lequel elle
est appelée.

Interface

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 12

• L’interface est un concept fondamental
de la programmation orientée objet
(POO).

• Elle définit un ensemble de méthodes
publiques (et parfois de constantes)
qu’une classe doit implémenter.

• Toute classe qui implémente cette
interface doit fournir une définition pour
chacune de ces méthodes.

• C’est un moyen d’abstraction : on se
concentre sur ce qu’une classe doit faire
(le comportement), plutôt que sur la
manière dont elle le fait
(l’implémentation).

Ségrégation des interfaces

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 13

• Un objet ne doit pas dépendre de
méthodes qu’il n’utilise pas.

• Il est préférable de diviser une
interface générale (monolithique)
en plusieurs interfaces
spécifiques et ciblées.

• Chaque objet n’implémente et
n’accède qu’aux méthodes qui le
concernent, évitant les
dépendances inutiles.

• La classe EnregistreurMySQL doit
implémenter la méthode afficher()
dont il n’aura jamais besoin !

Inversion des dépendances

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 14

• Les modules de haut niveau ne doivent pas dépendre des modules de bas niveau. Les deux
doivent dépendre d'abstractions.

• Les abstractions ne doivent pas dépendre des détails, mais l’inverse.

• La fonction d’enregistrement d’un étudiant (haut niveau) dépend directement de la logique
spécifique à MySQL (bas niveau) → changer de BD obligerait à modifier cette fonction.

• Solution : inverser la dépendance pour que le code bas niveau (MySQL, MongoDB, …) dépende
d’une abstraction définie au niveau supérieur (enregistrement d’un étudiant).

UML/JAVA

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 15

Application

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 16

Réaliser un petit projet Java qui respecte les principes SOLID

Nous souhaitons modéliser une entité Etudiant et son sous-type
EtudiantUMI, qui introduit un attribut supplémentaire. Le programme
doit permettre d'afficher et de sauvegarder (simulé simplement par un
affichage à l’écran, pour le moment!) les informations des étudiants vers
des différentes BD (MySQL, MongoDB).

Architecture monolithique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 17

• L’architecture monolithique est le modèle traditionnel où toutes les
fonctionnalités d’une application sont regroupées dans une seule unité:

• Un seul exécutable, un seul répertoire de code source, une seule BD.
• Les composantes sont étroitement couplées.
• Application autonome et indépendante.

• Facile à prendre en main, rapide à développer (au début), simple à
déployer.

• Un changement de code → reconstruire et redéployer toute l’application.
• Complexité de mises à jour et d’ajout de nouvelles fonctionnalités, en

particulier avec des applications volumineuses.
• Difficile de faire évoluer une seule fonctionnalité indépendamment.

• Les architectures moderne → décomposition en services / fonctionnalités
spécialisés et faiblement couplés → agilité, flexibilité, et évolutivité.

Architecture monolithique

Ahmed Laatabi | ENSAM - Meknès | 2025-2026 18

source : microservices.io

Une application e-commerce est déployée
comme une seule application monolithique.
Les trois fonctionnalités métiers sont :

• Prise de commandes.
• Vérification de l’inventaire (stock) et du

crédit disponible.
• Expédition des commandes clients.

Toutes les composantes, y compris
l’interface utilisateur (StoreFrontUI) et les
services backend (gestion du crédit,
inventaire, expédition) sont regroupées
dans un même projet.

→ Par exemple, une application Java peut
être déployée dans un seul fichier WAR sur un
serveur Tomcat.

