I 1 Y
Jeslowl glga dadln |) %oy Lo agaog duyml
UNIVERSITE MOULAY ISMAIL FCOLE MTIONALE SUPERIEURE DARTS 1 METIERS

JOBINTEGH

Architecture logicielle

Ahmed Laatabi
delaatabif{at}umisacema
ENSAM - Meknés
2025-2026

Logiciel

« Un logiciel (software) est un ensemble de programmes, de données, et de régles qui permettent a un
appareil informatique (ordinateur, smartphone, ...) de fonctionner et d'exécuter des taches
spécifiques. Il se compose d'une suite d'instructions (code), écrites dans un langage de
programmation, qui implémentent un ou plusieurs algorithmes.

« Le matériel (hardware) est l'ensemble des composants physiques et électroniques d'un systéme
informatique (carte mere, disque dur, ...) qui sert de support et permet ['exécution des logiciels.

Systéme informatique = Software (immatériel) + Hardware (matériel).

« Le systéme informatique est 'une des composantes principales du systéme d’'information (SI).

« Le Sl est 'ensemble organisé de ressources matérielles, logicielles, humaines et organisationnelles
permettant la collecte, le stockage, le traitement et la diffusion de linformation (les données)
nécessaire au fonctionnement et a la prise de décision au sein d'une organisation.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 2

Architecture logicielle

« L'architecture logicielle décrit, schématise et documente ['ensemble des éléments (ou composantes) d'un
systéme informatique ainsi que leurs interactions (ou relations) en termes d'échanges et d'entrées/sorties.

« Son objectif est de définir la structure, les modeles, et les solutions (technologies) nécessaires pour répondre
aux besoins du client et assurer la cohérence, la fiabilité, et ['évolutivité du systeme.

« Une bonne architecture logicielle doit garantir les qualités non fFonctionnelles du systeme :
« Maintenabilité : facilité de corriger, modifier, ou faire évoluer le logiciel.
« Performance : rapidité et efficacité d'exécution.
« Scalabilité : capacité a s'adapter a une charge croissante de données et de trafic.
« Sécurité : protection des données et des processus.

« Les architectures logicielles modernes tendent 3 adopter une séparation en modules (ou couches) : 1)
interface utilisateur (couche de présentation); 2) processus métiers (couche logique); 3) persistance des
données (couche d'accés aux données).

Architecte logiciel

« L'architecte logiciel est le concepteur de haut niveau du systeme. Son réle consiste a:
« Définir la structure globale et les principes de conception du logiciel :

« Choisir les technologies, les styles d'architecture (monolithique, microservices, ...), les
patterns (modeles de conception) et les normes a suivre.

« Coordonner entre les équipes non technigues (produit, direction) et les équipes
techniques (développement, test, déploiement).

« Garantir l'intégration et la cohérence entre les différents modules du logiciel, assurant
ainsi qu'il réeponde aux besoins clients et au cahier des charges.

« Architecte logiciel : concoit le plan stratégique du logiciel avant sa construction. Il produit
des documents et des diagrammes qui répondent au “quoi 7' (structure et regles).

* Ingénieur logiciel / Développeur : construit et implémente le logiciel en suivant ce plan. Il se
concentre sur le “comment 7’ (algorithmes, codes, et implémentation).
4

Principes fondamentaux

« Principes structurels : qualités non fonctionnelles a maximiser.
« Séparation des préoccupations (separation of concerns) : le systeme est divisé en modules, chacun

ayant une responsabilité unique et bien définie. Les composantes du méme module doivent étre
fortement liées et cohérentes (high cohesion) — modularité et maintenabilité.

« Modularité : les modules qui composent le systeme sont indépendants et peuvent étre
développés, testés et déployés de maniere autonome et parallele. Chaque module doit

encapsuler sa complexité, qui doit étre abstraite aux interactions — évolutivité, interopérabilité
et réduction des colts.

« Couplage Faible (low coupling) : les dépendances entre les modules doivent étre minimales pour
éviter les erreurs inter-modules. chaque module doit pouvoir évoluer indépendamment afin de
fFaciliter les corrections ou ['ajout de nouvelles fonctionnalités — interopérabilité et scalabilité.

« Principes de conception (design principles) : régles a suivre pour répondre aux besoins fonctionnels.
« KISS (Keep It Simple & Stupid) : toujours privilégier la solution la plus simple qui fonctionne.
« DRY (Don't Repeat Yourself) : les données et les logiques ne doivent pas étre dupliquées.
« YAGNI (You Aren't Gonna Need It) : éviter d'implémenter des données ou logiques inutiles.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 5

SOLID

SOLID regroupe cing principes de conception a suivre pour produire de bonnes architectures logicielles
(code compréhensible, flexible et maintenable), notamment en programmation orienté objet :

« Single responsibility (responsabilité unique) : une fonction ou une classe ne doit avoir qu'une seule
responsabilité (un seul réle, objectif).

« Open/closed (ouvert/fermé) : une fonction ou une classe doit étre fermée a la modification mais
ouverte a l'extension : ajout de nouvelles fonctionnalités sans modifier le code existant.

« Liskov substitution (substitution de Liskov) : une instance de type de base doit pouvoir étre remplacée
par une instance de 'un de ses sous-types sans altérer le bon fonctionnement du programme. Les
sous-classes peuvent donc étre utilisées de maniere interchangeable avec leurs classes parentes.

« Interface segregation (ségrégation des interfaces) : préférer la définition de plusieurs interfaces
spécifiques plutét qu'une seule interface générale. Ainsi, les classes ne dépendent que des méthodes
dont elles ont besoin, ce qui réduit les couplages inutiles.

« Dependency inversion (inversion des dépendances) : il faut dépendre des abstractions, pas des
implémentations (les modules de haut niveau ne doivent pas dépendre des modules de bas niveau,
mais tous deux doivent dépendre d'abstractions).

Responsabilité unique

“A class should have only one reason to change”

- Une fonction permet de récupérer (depuis le
clavier) les informations d'un étudiant (CNE,
nom complet, date de naissance) puis de les
enregistrer dans une BD.

- Cette fonction a deux raisons de changer (car
elle a deux responsabilités distinctes) :

def saisir et enregistrer etudiant():
cne = input("CNE : ")
nom _complet = input ("Nc comples . .Y
date_naissance = input("Dats = naissance : ")

print ("Enregistrement dans MySQL...")
print (f"INSERT INTC estudiant VALUES cne B
nom complet date_naissance)

saisir et enregistrer etudiant()

- Si l'on souhaite récupérer une donnée
supplémentaire (lieu de naissance).

- Si l'on souhaite modifier le mécanisme

def saisir etudiant():

cne = input ("CNE : ") 7

nom complet = input ("l oln) A)
date naissance = input("Date de naissance : ")
return cne, nom complet, date naissance

d'enregistrement des données:
- MySQL — MongoDB.

print (‘ .;,-, - - s = -— - - - - =
print (£"INSERT INTC v
nom complet

def enregistrer etudiant(cne, nom complet, date naissance):

aite)
ALUES cne
date_naissance Fr)

cne, nom complet, date_naissance = saisir etudiant()
enregistrer etudiant (cne, nom complet,

date_naissance)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Responsabilité unique

« Le principe de responsabilité unique (SRP) exige
qu’'un changement de nature n'affecte qu’'une seule
composante.

« Ici, les deux fonctions dépendent directement de la
méme structure de données (cne, nom_complet,
date naissance, ...).

« Si la structure des données change — il faut
modifier les deux fonctions (violation du SRP).

« Lutilisation des fonctions simples, couplées
fortement aux détails de la structure de données,
limite limplémentation correcte du principe de
responsabilité unique.

« |l faut que les deux fonctions dépendent d'une
interface ou d'abstraction commune (un objet), et
non directement de ses champs (structure interne).

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

objet --> dictionnaire
def to_dict(self):
return { :’
=": self.cne, ®

: self.nom complet,
: self.date_naissance

def saisir etudiant():

cne = input ("Cl :)
nom complet = input("! ple :)
date_naissance = input("Dats = 3=) e)

return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant (etudiant):
data = etudiant.to_dict()
print ("Enregistreme MySQL..."™)
print (= T IN] =1 Lant ALUE
.jJoin([repr(v) for v in data.values()])

etu = saisir etudiant()
enregistrer_etudiant(etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Ouvert/fermé

« Une fois qu'une classe ou une fonction a été testée et validée, elle ne doit plus étre modifiée,
mais seulement étendue pour ajouter de nouvelles fonctionnalités.

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

objet --> dictionnaire
def to_dict(self):

return {
"cne": self.cne,

mplet”: self.nom complet,
"date naissance": self.date_naissance

def saisir_etudiant():
crne = input{“CNE : %)
nom complet = input("Nom complst : ")
date_naissance = input("Date d= naissance : ")
return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant(etudiant):
data = etudiant.to_dict()
print ("Enregistrement dans MySQL...")
print (£f"INSERT INTO studiant VALUES
£f"{', '.join([repr(v) for v in data.values()]):!):;")

class Etudiant2 (Etudiant):

def

etu

def init (self, cne, nom complet, date_naissance,
lieu naissance):
super (). init (cne, nom complet, date naissance)
self.lieu naissance = lieu naissance

def to_dict (self):
data = super().to_dict()
data["li=su_naissance"] = self.lieu naissance
return data

saisir etudiant2():

etud = saisir_etudiant()

lieu naissance = input("Lisu de naissance : ")

return Etudiant2 (etud.cne, etud.nom complet, etud.date_naissance,
lieu naissance)

= saisir etudiant2()

enregistrer etudiant (etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 9

Substitution de Liskov

« Bonne utilisation de ['héritage : si G est un sous-type de T, alors tout objet de type T peut étre
remplacé par un objet de type Gsans altérer les propriétés désirables du programme.

— les classes dérivées G ne doivent pas casser le code qui utilise les classes de base T.

class Etudiant:
def init__ (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

f objet --> dictionnaire
def to_dict(self):

return {
y =": self.cne,
o ": self.nom complet,
=": self.date_naissance

def saisir etudiant():
cne = input("CNE : ")
nom complet = input ("Nom complst : ")
date_naissance = input("Date de naissance : ")
return Etudiant (cne, nom complet, date_naissance)

def enregistrer etudiant (etudiant):
data = :tadlant to_dict()
print (" :;;’_-a-a., dans MySQL...")
print (£ T INT =tudiant VAI o

'.join([repr(v) for v in data.values()])

)

class Etudiant2 (Etudiant):
def init__ (self, cne, nom complet, date_naissance,
lieu_naissance):
super()._ init (cne, nom complet, date naissance)
self.lieu naissance = lieu naissance

def to_dict (self):
data = super().to_dict()
data["lisu naissance"] = self.lieu naissance
return data

def saisir etudiant2():
etud = saisir etudiant()
lieu naissance = input("Lisu de naissance : ")

return Etudiant2 (etud.cne, etud.nom complet, etud.date_naissance,

lieu naissance)

etu = saisir etudiant2 ()
enregistrer_ etudiant (etu)

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

10

POO

L'héritage permet 3 une classe (classe fille,
classe dérivée, sous-classe) d'acquérir et
réutiliser les propriétés (attributs) et les

comportements (méthodes) d'une autre
classe (classe mere, classe de Dbase,
super-classe), tout en ajoutant ou modifiant
des fonctionnalités class Etudiant?2
(Etudiant).

Le polymorphisme (multiples formes)

permet de traiter des objets de types
différents via une interface unique : une
méme méthode peut se comporter
différemment selon ['objet sur lequel elle
est appelée.

class Etudiant:
def init (self, cne, nom complet, date_naissance):
self.cne = cne
self.nom complet = nom complet
self.date_naissance = date_naissance

def afficher (self):
print (f"CNE : self.cne self.nom complet
f"De 3 self.date_naissance!")
class Etudiant2 (Etudiant):
def init_ (self, cne, nom complet, date naissance,
lieu naissance):
super()._ init (cne, nom complet, date_naissance)
self.lieu naissance = lieu naissance

def afficher (self):

print (f"CNE : {self.cne self.nom complet
f"De nai an self.date_naissance
self.lieu naissance!")
etudiants = |
Etudiant ("123", "Moha Sage", ")
Etudiant2 ("45¢6", "Moha Fou", "12/05/88", "Maroc")

]

for etu in etudiants:
etu.afficher ()

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 11

Interface

« Linterface est un concept fondamental
de la programmation orientée objet
(POO).

« Elle définit un ensemble de méthodes
publiques (et parfois de constantes)
gu’une classe doit implémenter.

« Toute classe qui implémente cette
interface doit fournir une définition pour
chacune de ces méthodes.

« (C'est un moyen d’abstraction : on se
concentre sur ce qu'une classe doit faire
(le comportement), plutdét que sur la
maniere dont elle le fait
(limplémentation).

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

class interface interface
A
extends | implements extends
|
class class interface
class EnregistreurEtudiant:
#Enregistrer un é€tudiant, gquelle gue soit la BD

def enregistrer(self, etudiant):
raise NotImplementedError

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()

print (f"En:
print (f"INSEE

")

.jJoin([repr(v) for v in data.values()])

12

Ségrégation des interfaces

« Un objet ne doit pas dépendre de
méthodes qu'il n'utilise pas.

« |l est préférable de diviser une
interface générale (monolithique)
en plusieurs interfaces
spécifigues et ciblées.

« Chaque objet n'implémente et
n'‘accede qu'aux méthodes qui le
concernent, évitant les
dépendances inutiles.

* La classe EnregistreurMySQL doit
implémenter la méthode afficher()
dont il n’aura jamais besoin !

class EnregistreurEtudiant (ABC) :

def enregistrer(self, etudiant):
pass

def afficher(self, etudiant):
pass

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()
print (f"Enregistrement dans vSQL...")
print (: I =tudiant VA2 ES
.Join([repr(v) for v in data.values()])

def afficher(self, etudiant):
print (f"{etudiant.nom complet etudiant.cne
Y] etudiant.date naissance!")

def enregistrer etud(etudiant: Etudiant,
enregistreur: EnregistreurEtudiant):
enregistreur.enregistrer (etudiant)

etud = Etudiant (" 2 Franz afka", "0l] =In)
enregistrer etud(etud, EnregistreurMySQL())

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 13

Inversion des dépendances

* Les modules de haut niveau ne doivent pas dépendre des modules de bas niveau. Les deux

doivent dépendre d'abstractions.

« Les abstractions ne doivent pas dépendre des détails, mais l'inverse.

« La fonction d’enregistrement d'un étudiant (haut niveau) dépend directement de la logique
spécifique a MySQL (bas niveau) — changer de BD obligerait a modifier cette fonction.

« Solution : inverser la dépendance pour que le code bas niveau (MySQL, MongoDB, ...) dépende
d'une abstraction définie au niveau supérieur (enregistrement d’'un étudiant).

class EnregistreurEtudiant:
#Enregistrer un étudiant, quelle que soit la BD
def enregistrer (self, etudiant):
raise NotImplementedError |

class EnregistreurMySQL (EnregistreurEtudiant):
def enregistrer (self, etudiant):
data = etudiant.to_dict()
print (f"Enregistrement ans MySQL...")
print (I’ SER] I =tudiant VALUES
3 .Join([repr(v) for v in data.values()])

class EnregistreurMongoDB (EnregistreurEtudiant):
def enregistrer(self, etudiant):
data = etudiant.to_dict()
print (f"f =G 3 rement 31 goDB...")
print (f"db.etudiants.insert one data)

def enregistrer etud(etudiant: Etudiant,
enregistreur: EnregistreurEtudiant):
enregistreur.enregistrer (etudiant)

etud = Etudiant (" N Franz afka", | i i)
enregistrer etud(etud, EnregistreurMySQL())
enregistrer etud(etud, EnregistreurMongoDB())

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026 14

IMylnterface.java:

UML/JAVA

String g=
int 1= 0;

«Java Class»

(® SuperTestClass
ajint
ar:int

& name : String
@ getName ()

«Java Class»

(3 SubTestClass
aj:int
a rint

& name : String
@ getMName ()

SuperTestClass.java:

public class SuperTestClass {
int 1 : 3
Intox 5
String name ="myName";

public wvoid getName(){
g

SubTestClass.java:

public class SubTestClasss
extends SuperTestClass {
int 1 = 2;
int r = 3;
String name ="myName";

public wvoid getName(){
2

{AbstractClassF .java:

public class AbstractClassF

=

public interface MyInterface {

public void charge (int =)

implements MyInterface {

public void charge({int =){

«Java Interface»
O Myinterface
o g String

o j:int

@ charge ()

«Java Class»
(3 AbstractClassF

® charge ()

«Java Class»
(® OwnedClass

1
- associatedClass

«Java Class»
(3 OwnerClass

1
+ otherClass

Ahmed Laatabi | ENSAM=MeRNEeS | Z025-Z076

|OwnedClass.Java:
public class OwnedClass {

/f <<class body>>

[OwnerClass.Java:

public class OwnerClass {
private OwnedClass associatedClass;
public QOunerClass otherClass:

/f <<class body>>
3 15

Application

Réaliser un petit projet Java qui respecte les principes SOLID

Nous souhaitons modéliser une entité Etudiant et son sous-type
EtudiantUMI, qui introduit un attribut supplémentaire. Le programme
doit permettre d'afficher et de sauvegarder (simulé simplement par un
affichage a l'écran, pour le moment)) les informations des étudiants vers
des différentes BD (MySQL, MongoDB).

16

Architecture monolithique

'architecture monolithique est le modele traditionnel ou toutes les
fonctionnalités d’'une application sont regroupées dans une seule unité:
« Unseul exécutable, un seul répertoire de code source, une seule BD.
« Les composantes sont étroitement couplées.
« Application autonome et indépendante.

Facile a prendre en main, rapide a développer (au début), simple a
déployer.

Un changement de code — reconstruire et redéployer toute ['application.
Complexité de mises a jour et d'ajout de nouvelles fonctionnalités, en
particulier avec des applications volumineuses.

Difficile de faire évoluer une seule fonctionnalité indépendamment.

Les architectures moderne — décomposition en services / fonctionnalités
spécialisés et fFaiblement couplés — agilité, flexibilité, et évolutivité.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

-

Data
Access
layer

Logic

MONOLITHIC
ARCHITECTURE

17

Architecture monolithique

Une application e-commerce est déployée
comme une seule application monolithique.
Les trois fonctionnalités métiers sont :

« Prise de commandes.

« Vérification de l'inventaire (stock) et du
crédit disponible.

« Expédition des commandes clients.

Toutes les composantes, y compris
'interface utilisateur (StoreFrontUl) et les
services backend (gestion du crédit,
inventaire, expédition) sont regroupées
dans un méme projet.

— Par exemple, une application Java peut
étre déployée dans un seul fichier WAR sur un
serveur Tomcat.

Ahmed Laatabi | ENSAM - Mekneés | 2025-2026

Traditional web application architecture

Browser [€—> Apache |

Simple to

develop
test
deploy
scale

StoreFrontUI

Accounting

Service

MySQL

Database

InventoryService

Shipping
Service

source : microservices.io

18

