Chapitre 4 : Héritage en Java

1- Une classe B étend une classe A pour ajouter ou modifier des services. On peut aussi
ajouter des propriétés.

2- La nouvelle classe B est appelée : classe Dérivée, ou classe Fille.

3- Laclasse A est appelé classe Mére ou classe de Base.

4- On dit que B étend A ou B hérite de A.

Contraintes :

5- Sila classe A ne dispose d’aucun constructeur (le compilateur génére un constructeur
sans parametres pour A), la classe B peut étre définie sans contraintes.

Exemple :

class A {

private int x, v

rublic void setX (int x) {

RSG5 = =5
rublic int getX() {
return X7
public int getXY () {

return v
public ~roid pxrint () {

System.oatbt praintldn (™ (™ < 35 = W, " op g W)y s

[

Class B extends 2 {

=>» Un constructeur sans parameétres est généré pour B
6- Si A dispose d’un constructeur avec parametres et pas de constructeur sans
parametres, alors la définition suivante est erronée :

Class B extends 2 {

7- En fait un constructeur sans parametres est généré pour B, celui-ci appellera le
constructeur sans parametres de A qui n’existe pas. D’ou I'erreur.

8- Reégle Générale : tous les constructeurs d’une classe Fille appellent automatiquement

le constructeur de la classe Mére. Cet appel est généré automatiquement par le
compilateur comme premiere instruction de chaque constructeur.

9- Cet appel au constructeur de la classe Mére peut étre réalisé explicitement a |'aide
du mot clé super :

Class B extends A {

10- Cet appel comme premiére instruction signifie que si on a une classe C qui dérive de
B, alors :
e Le constructeur de A est exécuté en premier lieu
e Ensuite celuide B

e Etenfin celuide C
Class A {

()

4

System.out.printin(™a"”) ;

Class B extends A {
B ()

System.out.printiln(™B"”) ;

Class C extends B{

System.out.println(“C”) ;

Une instanciation de la classe C -> I'affichage suivant
A
B
C
11- 'existence du mot clé super permet de dérouter 'appel a un autre constructeur avec
parameétres en précisant entre parenthéses les arguments d’appel de celui-ci :

class A {
privatbte ImkE 37
A0 o
System.ocout.printin (M“A") ;
}

A(int x) { B —
Thiilsy ot — P

System.ocout.println (MA(x) ") ;

}
Class B extends A {
Bi¢) -
super (20) ;

System.ocout.printiln(™“"B”) ;

Au résultat, on aura :
A(x)
B
12- Chaque super appel la classe Mére immédiatement supérieure

class A {
private int x;
A() {
System.out.println(“A”) ;

}
A(int =) { -~
This .x = %;
System.out.println (“A(x)"”) ;
}

Class B extends A {
B() {
super (20) ; —

System.ocout.println(“B”) ;

Signifie que B a un constructeur

Class C extends B {
cO | avec un parametre entier, ce qui
n’est pas le cas.
erreur

// est une

super (20) ;
System.out.println(“B”) ;

13- Remargque : un constructeur d’une classe peut aussi appeler autre constructeur de la
méme classe (pour réutiliser les instructions définies dans ce dernier). On utilisera le

mot clé this.

class & =f
parizwalbtes siavks S5

2 () { =
System.ocout.prrintIn(M™A") ;
}
A(int = {
thi=s ()
this.x = x;
System.ocout.printliln (MA(x) 7)) ;
}
}
Ou encore :

class A {

private int x;

A () A
this (20) ;

System.out.pxr

intln (Y“A"”) ;

1

5

Al Ent. 3%) { «-——

thissasx
System.out.println (“"A(x) ") ;

= X7

e

14- l'instruction this() doit aussi étre la premiére instruction du constructeur.

15- 'extension d’une classe permettra d’ajouter des services :

Class &n {
s () {
System.out.println (“A) ;

}
wvoid s1o() {

et
!

Class B extends A {
{
System.out.printin(M™B7"7) ;

B (

~

¢
odada- S3) {

!

Une instance « a » de « A » aura droit aux services : sl1() et s2()
Une instance « b » de « B » aura droit aux services

s1(), s2() (hérités) ainsi qu’au service s3().

A a = new AQ)
B b = new B() -
s Uiy asess2Z 0 s = A

Brasld)sy bes20)z bios3it)s

16- L'extension d’une classe permettra de modifier des services. On parlera de la

Redéfinition.

Class A {
A Q) {
System.ocout.printin (™“A") ;

}
void s1 () {
System.ocout . . println("“Sexvice s1 () de A7) ;

Class B extends A {
Bi()
System.ocut.println(“B”) ;
}
void: sl () {

System.out.println(“"Sexrvice sl () Redéfini dans B”) ;

A a = new A()

N

B b = new B() ;

a.sl ()

~

> “Service sl() de A7 ;
b.s1(); = “Service sl () Redéefini dans B’ ;
17- Si on veut réutiliser le service s1() de la classe Mére dans la classe Fille, il est possible

d’appeler le service sl () de la classe Mére depuis la classe Fille a I'aide de
I'instruction super.si() :

Class B extends A ({
System.ocut.println(“B”) ;
void sl () {

System.out.println (“Sexrvice sl () Redéefini dans B”) ;

supexr.sl() ;

e

b.s1(); =-> “WService sl1() Redéfini dans B’ ;

“WService s1() de A’ ;

En résumé : le mot clé super désigne la classe mére. Il peut étre utilisé dans deux
situations différentes :

1. Pour appeler un constructeur de la classe mére : il est alors utilisé comme premiére
instruction du constructeur de la classe fille

Syntaxe :
super(parametres du constructeur de la classe mére) ;

Exemple :

Classe Mere :

class A {
private String name;
A(String S)
{

name = 3;

}

String getName () {
return name;

e

Classe Fille :
class B extends A {

B(String Nom) {
super (Nom) ;

}

public static void main(String[] args) {
B objet = new B("objet B") :;
System.out.println (B.getName ()) ;

}

2. Pour appeler une méthode de la classe meére, si celle-ci est redéfinie dans la classe
fille.

Syntaxe :

super.nomDelaMethode(parametres) ;

Exemple :

class A {
void p ()
{
System.out.println("Méthode p() de la classe A"):;
}
}

public class B extends A {

void p ()
{
System.out.println("Méthode p() de la classe B"):
super.p () ;
}
public static void main(Stringl[] args) {
B objet = new B()
objet.p ()
}

Le programme affichera :
Méthode p() de la classe B
Méthode p() de la classe A

18- Remarque : la classe Object est la classe mére de toutes les classes sans mére. Ainsi la
définition suivante :

class A {

oyt

Est équivalente a :

class A extends Object {

(S}

Résultats :

19- Résultat N° 1 : la classe Object se trouve en téte de I'arbre d’héritage de toutes les
classes Java.

20- Résultat N° 2 : toute nouvelle classe va hériter toutes les méthodes public de la classe
Object

21- Résultat N° 3 : comme exemple de méthodes, il y a la méthode toString() invoquée
automatiquement par le compilateur lors d’une tentative d’affichage d’un objet :

System.out.println (ocbjet)

=

System.out.println (objet.toString()) //générée par le compilateur

Mais aussi dans tous contexte nécessitant cette transformation : généralement la
concaténation de chaines de caractéres :

s + objet + ... & s + objet.tosString () +

22- La méthode toString() est une méthode public de la classe Object qui retourne une
chaine de caractére ; I'objet est alors « imprimable » ou « affichable ».

23- La méthode toString() est définie par défaut (dans Object) pour retourner I'adresse
de I'objet sous forme d’une chaine de caracteres.

24- Il est donc possible de la redéfinir dans n’importe quelle classe pour choir le format
adéquat d’afficher des objets de la classe.

Exemple :
class A {

BRIV e 10E B ¥ NECESSAIRE

Rublig String toString() {

return "(" + x + ", LLE 8 y + wy m) P

25- La redéfinition d’'une méthode ne doit pas réduire ses privileges d’acces :

private wvoid p ()

; =>»(Red)=>» private, protected, “sans”

public
protected wvoid p() ; =2 (Red)=>» protected, “sans” , public
void p() ; = (Red)=>» “sans” , public

public void p()

r

= (Red) = public

26- Important : un objet de classe Fille peut étre affecté a un objet de classe Meére :

L'affectation [Mére <- Fille] est possible :

Eille £ = new Eille {sms)d :
Partie Commune
Mere m = £ ; / f
m—__ - e
=> 1’objet « m » aura une Mere
Vue plus restreinte que « f»
Fille
J

27- Important : I’affectation [Fille <- Mére] n’est possible que :

e Sion utilise un transtypage (casting)

e Sil'objet pointe effectivement un obijet fille :

Exemple :

Exl e EL

Remarques:

new Fille (...) ;

// 1l7objet mére Pointe

(Fille) m // Possible

new Mere (...) ;

(Fille)m2 ; // Possible lors de la compilation

Mais ERREUR lors de I’Exécution.

une fille.

(syntaxiquement).

28- Le casting des objets en java permet de Retrouver l'identité réelle d’un objet
29- Pas de casting entre des objets de classes n’ayant pas de relation Mére-Fille
30- Cette relation peut ne pas étre directe

r

Exemple :

C étend B et B étend A, on peut faire :

C: el = yyexgc Cal...) 5
A a = cl ; 7S Mére €& Fille
s =2 — (Cc) a; // Fille < Meéere

Classe Abstraites et Interfaces

En Java, il existe 3 types d’entités qu’on peut manipuler :

1- Les classes (déja vues)
2- Les classes abstraites présentées par le mot clé abstract :

abstract class NomClasse {

}

Dans une classe abstraite, le corps de quelques méthodes peut ne pas étre défini (on

déclare uniquement le prototype de la méthode). Ces méthodes sont dites des méthodes

abstraites. Une méthode abstraite est aussi présentées par I'intermédiaire du mot clé
abstract de la maniére ci-apres. C’est aux classes dérivées de redéfinir ces méthodes et
de préciser leur comportement.

abstract class NomCla =

t U
W]
H
1]
=
D
rt
1)}
H
W]

e

abstract type NomMethode (p

¥

Une classe abstraite ne peut donc jamais étre instanciée. Il s’agit d’une spécification
devant étre implémentée par I'intermédiaire d’une classe dérivée. Si cette derniere
définit toutes les méthodes abstraites alors celle-ci est instanciable.

Remarque :

Une classe abstraite peut ne pas contenir des méthodes abstraites. Cependant, une
classe contenant une méthode abstraite doit obligatoirement étre déclarée abstract.

3- Les interfaces qui sont définies par I'intermédiaire du mot clé interface au lieu de
class constituant un cas particulier des classes abstraites : d’une part, ce sont des
classes ou aucune méthodes n’est définies (uniguement le prototype de chaque
méthode). D’autre part, I'extension d’une interface est appelé implémentation et
elle est réalisé par I'intermédiaire du mot clé implements.

10

Définition d’une interface :

Interface NomInterfacse {
tcypel methode 1 (parametres

)]
TyvpeZ methode Z (paramsetres) -

Implémentation d’une interface :

0
'_J
]
0}
Ul

NomDeClasse implements NomInterface {

e

Remarques :

1. Une classe qui implémente une interface doit définir toutes les méthodes de
I'interface
Une interface peut aussi contenir des attributs

3. Tous les attributs d’une interface doivent obligatoirement initialisés
Tous les attributs d’une interface sont public, static et final.

11

