
1 
 

Chapitre 4 : Héritage en Java 

1- Une classe B étend une classe A pour ajouter ou modifier des services. On peut aussi 

ajouter des propriétés. 

2- La nouvelle classe B est appelée : classe Dérivée, ou classe Fille. 

3- La classe A est appelé classe Mère ou classe de Base. 

4- On dit que B étend A ou B hérite de A. 

Contraintes : 

5- Si la classe A ne dispose d’aucun constructeur (le compilateur génère un constructeur 

sans paramètres pour A), la classe B peut être définie sans contraintes. 

Exemple : 

 

 

 Un constructeur sans paramètres est généré pour B 

6- Si A dispose d’un constructeur avec paramètres et pas de constructeur sans 

paramètres, alors la définition suivante est erronée : 

 

7- En fait un constructeur sans paramètres est généré pour B, celui-ci appellera le 

constructeur sans paramètres de A qui n’existe pas. D’où l’erreur. 



2 
 

8- Règle Générale : tous les constructeurs d’une classe Fille appellent automatiquement 

le constructeur de la classe Mère. Cet appel est généré automatiquement par le 

compilateur comme première instruction de chaque constructeur. 

9- Cet appel au constructeur de la classe Mère peut être réalisé explicitement à l’aide 

du mot clé super : 

 

10- Cet appel comme première instruction signifie que si on a une classe C qui dérive de 

B, alors : 

 Le constructeur de A est exécuté en premier lieu 

 Ensuite celui de B 

 Et enfin celui de C 

 
Une instanciation de la classe C -> l’affichage suivant 

A 

B 

C 

11- L’existence du mot clé super permet de dérouter l’appel à un autre constructeur avec 

paramètres en précisant entre parenthèses les arguments d’appel de celui-ci : 



3 
 

 

Au résultat, on aura : 

A(x) 

B 

12- Chaque super appel la classe Mère immédiatement supérieure 

 



4 
 

 

13- Remarque : un constructeur d’une classe peut aussi appeler autre constructeur de la 

même classe (pour réutiliser les instructions définies dans ce dernier). On utilisera le 

mot clé this. 

 

Ou encore : 

 

14- L’instruction this() doit aussi être la première instruction du constructeur. 

15- L’extension d’une classe permettra d’ajouter des services : 



5 
 

 

 

 

 

16- L’extension d’une classe permettra de modifier des services. On parlera de la 

Redéfinition. 

 

 



6 
 

 

17- Si on veut réutiliser le service s1() de la classe Mère dans la classe Fille, il est possible 

d’appeler le service s1 () de la classe Mère depuis la classe Fille à l’aide de 

l’instruction super.s1() : 

 

 

En résumé : le mot clé super désigne la classe mère. Il peut être utilisé dans deux 

situations différentes : 

1. Pour appeler un constructeur de la classe mère : il est alors utilisé comme première 

instruction du constructeur de la classe fille 

Syntaxe : 

super(paramètres du constructeur de la classe mère) ; 

Exemple : 

 



7 
 

 

2. Pour appeler une méthode de la classe mère, si celle-ci est redéfinie dans la classe 

fille. 

Syntaxe : 

super.nomDeLaMethode(paramètres) ; 

Exemple : 

 

 

Le programme affichera : 

Méthode p() de la classe B 

Méthode p() de la classe A 

18- Remarque : la classe Object est la classe mère de toutes les classes sans mère. Ainsi la 

définition suivante : 

 

Est équivalente à : 



8 
 

 

Résultats :  

19- Résultat N° 1 : la classe Object se trouve en tête de l’arbre d’héritage de toutes les 

classes Java. 

20- Résultat N° 2 : toute nouvelle classe va hériter toutes les méthodes public de la classe 

Object 

21- Résultat N° 3 : comme exemple de méthodes, il y a la méthode toString() invoquée 

automatiquement par le compilateur lors d’une tentative d’affichage d’un objet : 

 

Mais aussi dans tous contexte nécessitant cette transformation : généralement la 

concaténation de chaines de caractères : 

 

22- La méthode toString() est une méthode public de la classe Object qui retourne une 

chaine de caractère ; l’objet est alors « imprimable » ou « affichable ». 

23- La méthode toString() est définie par défaut (dans Object) pour retourner l’adresse 

de l’objet sous forme d’une chaine de caractères. 

24- Il est donc possible de la redéfinir dans n’importe quelle classe pour choir le format 

adéquat d’afficher des objets de la classe. 

Exemple : 

 



9 
 

25- La redéfinition d’une méthode ne doit pas réduire ses privilèges d’accès : 

 

26- Important : un objet de classe Fille peut être affecté à un objet de classe Mère : 

L’affectation [ Mère <- Fille ] est possible : 

 

27- Important : l’affectation [ Fille <- Mère ] n’est possible que : 

 Si on utilise un transtypage (casting) 

 Si l’objet pointe effectivement un objet fille : 

Exemple : 

 

 

 

Remarques: 

28- Le casting des objets en java permet de Retrouver l’identité réelle d’un objet 

29- Pas de casting entre des objets de classes n’ayant pas de relation Mère-Fille 

30- Cette relation peut ne pas être directe 

  



10 
 

Exemple : 

C étend B et B étend A, on peut faire : 

 

 

Classe Abstraites et Interfaces 

En Java, il existe 3 types d’entités qu’on peut manipuler : 

1- Les classes (déjà vues) 

2- Les classes abstraites présentées par le mot clé abstract : 

 

Dans une classe abstraite, le corps de quelques méthodes peut ne pas être défini (on 

déclare uniquement le prototype de la méthode). Ces méthodes sont dites des méthodes 

abstraites. Une méthode abstraite est aussi présentées par l’intermédiaire du mot clé 

abstract de la manière ci-après. C’est aux classes dérivées de redéfinir ces méthodes et 

de préciser leur comportement. 

 

Une classe abstraite ne peut donc jamais être instanciée. Il s’agit d’une spécification 

devant être implémentée par l’intermédiaire d’une classe dérivée. Si cette dernière 

définit toutes les méthodes abstraites alors celle-ci est instanciable. 

Remarque : 

Une classe abstraite peut ne pas contenir des méthodes abstraites. Cependant, une 

classe contenant une méthode abstraite doit obligatoirement être déclarée abstract. 

3- Les interfaces qui sont définies par l’intermédiaire du mot clé interface au lieu de 

class constituant un cas particulier des classes abstraites : d’une part, ce sont des 

classes où aucune méthodes n’est définies (uniquement le prototype de chaque 

méthode). D’autre part, l’extension d’une interface est appelé implémentation et 

elle est réalisé par l’intermédiaire du mot clé implements. 



11 
 

Définition d’une interface : 

 

Implémentation d’une interface : 

 

Remarques : 

1. Une classe qui implémente une interface doit définir toutes les méthodes de 

l’interface 

2. Une interface peut aussi contenir des attributs 

3. Tous les attributs d’une interface doivent obligatoirement initialisés 

4. Tous les attributs d’une interface sont public, static et final. 


