Programmation Orienté Objet

- JAVA -

Plan

Variables et Objets
i. Types primitifs
i. Classes et objets
ii. Tableaux

Types Wrappers

Classe Object

Gestion des chaines de caracteres
Quelques propriétés du langage Java
Gestion des exceptions

“Variables et Objets

En Java, il existe 3 catégories de types:
Les types de base (types primitifs)
Le type Classe
Le type tableau

' Types primitifs

Type Désignation Plage de valeurs
byte |Entier signé 1 octet |-128 = 127
short | Entier signé 2 octets [-32768 = 32767

int Entier signe 4 octets 21 =.2147483648 S 2°1-1=2147483647

long | Entier signé 8 octets |-2% =-9223372036854775808 >2%-1 = 9223372036854775807
float | Réel sur 4 octets
double |Réel sur 8 octets [-3.4:210™ 2 3.4x10"
char | Caractere 2 octets |[Code en Unicode: char ¢ = 'x’; ouchar ¢ = "\u0058’;
boolean | Type logique true et false

NB:

Le mot void n’est plus un type, il est utilisé uniguement pour

désigner les procédures

“Classes et Objets

e Création

La création est objets est toujours réalisée par I'intermédiaire de
'opérateur new :

NomDeClasse objet;

objet = new NomDeClasse(parametres d'un constructeur);
Ou encore:

NomDeClasse objet = new NomDeClasse(parametres d’un constructeur);

Exemple :

String S = new String("cecli est une chaine de caracteres");

“Classes et Objets

e Copie
Un objet peut aussi référencer I'adresse d’'un autre objet existant.

Les deux objets désigneront la méme information. Cependant Ia
destruction d’un objet ne causera pas la destruction de l'autre.

NomDeClasse objetl = new NomDeClasse(parametres d’un constructeur);

NomDeClasse objet2 = objetl;

Exemple :

String Sl = new String("cecl est une chaine de caracteres");

Il
(@]

1
=7

String S2

Classes et Objets

® Destruction

Un objet en mémoire est détruit automatiquement par l'intermédiaire
du Garbage Collector. Aucune destruction explicite n’est alors
nécessaire. Cependant peut étre affecté a un objet pour supprimer le
lien avec I'espace mémoire qu’il référencait avant. Ce qui entrainera la
libération de la mémoire si celle-ci n'est pas référencée par un autre
objet.

Exemple:
Objet = null;

e

Les tableaux

e Déclaration
Un tableau est objet dynamique déclaré toujours dynamiguement:
Type nomDuTableau[]; //type soit primitif ou classe

Exemples :

xnt FLl:

Streinmg TS L3

S’il s’agit d’un tableau de plusieurs dimension on utilise la syntaxe
suivante:

Type nomDuTableaul[][]...;
Exemple :

int M[][];

Les tableaux

e Création du tableau

Les tableaux sont, comme les instances de classes, créés par
I'intermédiaire de l'opérateur new tout en précisant la taille désirée.

NomDuTableau = new Type|[taille] ;

Exemples -

T1 = new int[20] :
T2 = new Vector[10] ;
T3 = new String[15] ;

Remarque:

Dans le cas des tableaux de classes, seul le tableau est créé mais pas

les éléments ce qui nécessite pour le cas de T2 et T3 la création de
chaque T2[i] et chaque T3[i].

Les tableaux

® Création des éléments d’un tableau
» Pour T1 (tableau de primitifs)
T1[0] =12; T1[1] = 25;

» Pour T2 et T3 (tableau d’objets): les éléments doivent étre créés
avant de s’en servir

T2[0] = new Vector(); T2[0].add(...);
T3[0] = new String(*..... %); if(T3[0].equals(...))

Les tableaux

¢ Taille d’un tableau

Apres la création d’un tableau sa taille ne peut pas étre modifiée, sauf
si on crée un nouveau tableau et on le référencie par la méme variable.
Dans tel cas les éléments de I'ancien sont perdus.

Remarque :

La taille d’'un tableau peut étre déterminé automatiquement par
I'intermédiaire de la propriété prédéfinie pour tous les tableaux :
length

int L = T.length:

| LeS tableaux

e |nitialisation d’un tableau

Un tableau peut étre créer un initialisation. Celle-ci se fait de la méme
maniere qu’en C : les éléments du tableau sont fournis entre accolades.

Exemple :

// Création d’un tableau a 5 éléments :
it T[] =4 45 10; 203 30; 105 kg
// Creation d’une matrice a 2 lignes et 3 colonnes :
e BL L & e 2x 3).
b4, 55 @} ¥;

// Création d’un tableau de deux chaines de caracteres :

String T[] = {new String("abc"), new String("def")}:

Les tableaux

¢ Tableau a plusieurs dimensions
Type nomDuTableaul][]...

Exemple: int M[][]

Création : M = new int[2][3]

Acces : M[i][j] = ...

Remarque:

Si on suppose que la 1 ere dimension c’est les lignes et que la 2 eme
dimension c’est les colonnes, alors :

M.Length : le nombre de ligne
M[i].length : le nombre de colonne de la ligne i.

Les tableaux

¢ Tableau a plusieurs dimensions

Exemple :

intM [][]=1{{1, 2, 4},
{2, 8, 95}

I

— Chaque M([i] est un tableau : M[0] = {1, 2, 4}
M[1] = {2, 8, 95}
- M.length =2
MI[O].length = M[1].length = 3

Les tableaux

¢ Tableau a plusieurs dimensions

Résultat :
Chaque ligne de la matrice peut avoir un nombre d’éléments différents

Exemple:

intM [][]={
{1, 2},
{2, 8, 6, 3},
{5, 8, 15}

Les types wrappers

Définition:

Les objet de type wrappers (enveloppeurs : Integer, Long, Float, Double)
représentent des objets qui encapsulent une donnée de type primitif et
qui fournissent un ensemble de méthodes qui permettent notamment
de faire des conversions.

Remarque :

Ces classes ne sont pas interchangeables avec les types primitifs
d'origine car il s'agit d'objet

Float reel = new Float("3.1415");
System.out.printIn(5 * reel); // erreur a la compil

e

La classe Object

C'est la super classe de toutes les classes Java : toutes ces méthodes
sont donc héritées par toutes les classes.

Voici la liste des méthodes de la classe Object:
e protected Object clone()

® boolean equals(Object obj)

e protected void finalize()

® Class getClass()

La classe Object

Les méthodes de la classe Object (Suit)

® int hashCode()

e void notify()

e void notifyAll()

® String toString()

e void wait()

e void wait(long timeout)

e void wait(long timeout, int nanos)

e

La gestion des chaine de caractere

® La classe String

Une chaine de caracteres est contenue dans un objet de la classe String
On peut initialiser une variable String sans appeler explicitement un
constructeur : le compilateur se charge de créer un objet.

Exemple : deux déclarations de chaines identiques
String uneChaine = "bonjour";
String uneChaine = new String("bonjour");

L'opérateur + permet de concaténer deux chaines de caracteres
On peut tester si une chaine est vide ou non en utilisant isEmpty().

/ |

La gestion des chaine de caractere

® La classe String

La comparaison de deux chaines doit se faire via la méthode equals()
qui compare les objets eux méme et non l'opérateur == qui compare
les références de ces objets.

Exemple :

String nom1 = new String("Bonjour");

String nom2 = new String("Bonjour");
System.out.printin(nom1 == nom?2); // affiche false
System.out.printin(noml.equals(nom?2)); // affiche true

La gestion des chaine de caractere

® La classe String : méthodes

Meéthodes la classe String Role

charAt(int) renvoie le niéme caractére de la chaine

compareTo(String) compare la chaine avec l'argument

concat(String) ajoute l'argument a la chaine et renvoie la nouvelle chaine
endsWith(String) vérifie si la chaine se termine par I'argument

equalsIgnoreCase(String) compare la chaine sans tenir compte de la casse

indexOf(String) renvoie la position de début a laquelle I'argument est contenu dans la chaine
lastIndexOf(String) renvoie la derniére position a laquelle I'argument est contenu dans la chaine
lenght() renvoie la longueur de la chaine

replace(char.char) renvoie la chaine dont les occurrences d'un caractére sont remplacées

starts With(String int) Vérifie s1 la chaine commence par la sous chaine

substring(int.int) renvoie une partie de la chaine

toLowCase() renvoie la chaine en minuscule

toUpperCase() renvoie la chaine en majuscule

trim() enléve les caractéres non significatifs de la chaine

e

La gestion des chaine de caractere

® La classe StringBuffer :

Les objets de cette classe contiennent des chaines de caracteres
variables, ce qui permet de les agrandir ou de les réduire.

Cet objet peut étre utilisé pour construire ou modifier une chaine de
caracteres chaque fois que l'utilisation de la classe String nécessiterait de
nombreuses instanciations d'objets temporaires.

La classe StringBuffer dispose de nombreuses méthodes qui permettent
de modifier le contenu de la chaine de caractere.

_—

Quelques propriétés du langage Java

1 - Les tableaux tels qu’ils sont définis en Java (objets dynamiques) ne
peuvent pas remplacer la notion de liste. En effet, des qu’ils sont créés,
on ne peut plus leur modifier la taille, sauf si on remplace le tableau
créé par un autre.

2 - Pour gérer les listes, on peut:
® |escréer al'aide de classes.

® QOu encore utiliser une classe Liste existante : LinkedList, Vector ou
Stack du package java.util.

e

Quelques propriétés du langage Java

3 - Un tableau de char n’est pas une chaine de caractere en Java. Il ne
peut donc pas étre géré comme une chaine.

Exemple:
L'écriture : char S[] = “abc";
est incorrecte.

4 — || est possible de convertir un tableau char [] en une chaine (String)
par 'intermédiaire de I'un des constructeurs de la classe String.

Exemple:
char S1[] = {‘a’, ‘b, ‘c’};
String s2 = new String(S2);

/ |

E— -
Quelques propriétés du langage Java

5 - Les variables de la classe (ou attributs) peuvent étre initialiser lors de
leur déclaration (a I'inverse de C++).

Class Classel {
private int x =12,y = 25;

6 - Toutes les classes prédéfinies ou définies par l'utilisateur lui méme
dévirent directement ou indirectement de la classe Objet
(java.lang.Object) . En conséquent les méthodes qui acceptent des
parametres de type Objet peuvent recevoir des arguments d’instance
de n’importe quelle classe.

/ |

Quelques propriétés du langage Java

7 - Pour déterminer le nom de classe d’un objet, on peut utiliser dans
I"'une des méthodes (non static) de la classe l'instruction :
getClass().getName(). La méthode getClass() retourne la classe (objet
de type Class), et la méthode getName() (de la classe Class) retourne,
sous forme de chaine de caractere, le nom de la classe :

8 - Pour déterminer le nom de la classe mere d’un objet, on peut
utiliser dans I'une des méthodes non static de la classe I'instruction :
getClass().getSuperclass().getName().

La méthode getSuperclass() de la classe Class retourne un objet de
type Class qui contient la classe mere de l'objet en cours.

La fgestion des exceptions

La gestion des exceptions en Java offre des moyens structurés pour
capturer les erreurs d’exécution d’'un programme et de fournir des
informations significatives a leur sujet. Pour le traitement des exceptions,
on utilise les mots clés try, catch et finally :

Ery 4
// Code pouvant se terminer en erreur et déclencher une exception.

}

catch(Exception e) {
// Code de traitement de 1'exception.
// La ligne suivante ouvre un suivi de pile de 1'exception :
e.printStackTrace();
}
finally {
// Le code inséré ici sera toujours exécuté,
// que 1l'exception alt été déclenchée dans le bloc try ou non.

e

La gestion des exceptions

Le bloc try doit étre utilisé pour entourer tout code susceptible de
déclencher une exception ayant besoin d’étre gérée. Si aucune exception
n’est déclenchée, tout le code du bloc try est exécuté. Mais, si une
exception est déclenchée, le code du bloc try arréte I'exécution a I'endroit
ou I'exception a été déclenchée et le controle passe au bloc catch, dans

lequel I'exception est gérée.

/ |

La gestion des exceptions

Le bloc catch permet de traiter I'exception. On peut faire tout ce dont on
a besoin pour gérer I'exception dans une ou plusieurs blocs catch. Le
movyen le plus simple de gérer des exceptions peut étre réalisé a travers
un seul bloc catch. Pour cela, 'argument entre les parentheses suivant
catch doit indiquer la classe Exception, suivie d'un nom de variable a
affecter a cette exception. Cela indique que toute exception qui est une
instance de java.lang.Exception ou de n‘importe laquelle de ses sous-
classes sera capturée.

La gestion des exceptions

Le bloc finally est optionnel. Le code se trouvant dans le bloc finally sera
toujours exécuté, méme si le bloc try gu’il déclenche une exception et ne
se termine.

