
Chapitre 3

Eléments de base du langage JAVA

bekkalimohammed@gmail.com

Plan
I. Variables et Objets

i. Types primitifs

ii. Classes et objets

iii. Tableaux

II. Types Wrappers

III. Classe Object

IV. Gestion des chaines de caractères

V. Quelques propriétés du langage Java

VI. Gestion des exceptions

En Java, il existe 3 catégories de types:

 Les types de base (types primitifs)

 Le type Classe

 Le type tableau

Variables et Objets

Types primitifs

NB:
Le mot void n’est plus un type, il est utilisé uniquement pour
désigner les procédures

Classes et Objets

 Création

La création est objets est toujours réalisée par l’intermédiaire de
l’opérateur new :

Ou encore:

Classes et Objets

 Copie

Un objet peut aussi référencer l’adresse d’un autre objet existant.
Les deux objets désigneront la même information. Cependant la
destruction d’un objet ne causera pas la destruction de l’autre.

Classes et Objets

 Destruction

Un objet en mémoire est détruit automatiquement par l’intermédiaire
du Garbage Collector. Aucune destruction explicite n’est alors
nécessaire. Cependant peut être affecté à un objet pour supprimer le
lien avec l’espace mémoire qu’il référençait avant. Ce qui entraînera la
libération de la mémoire si celle-ci n’est pas référencée par un autre
objet.

Exemple:

Objet = null;

Les tableaux

 Déclaration

Un tableau est objet dynamique déclaré toujours dynamiquement:

Type nomDuTableau[]; //type soit primitif ou classe

S’il s’agit d’un tableau de plusieurs dimension on utilise la syntaxe
suivante:

Type nomDuTableau[][]…;

Les tableaux

 Création du tableau

Les tableaux sont, comme les instances de classes, créés par
l’intermédiaire de l’opérateur new tout en précisant la taille désirée.

Remarque:

Dans le cas des tableaux de classes, seul le tableau est créé mais pas
les éléments ce qui nécessite pour le cas de T2 et T3 la création de
chaque T2[i] et chaque T3[i].

Les tableaux

 Création des éléments d’un tableau

 Pour T1 (tableau de primitifs)

 T1[0] = 12; T1[1] = 25; ….

 Pour T2 et T3 (tableau d’objets): les éléments doivent être créés
avant de s’en servir

 T2[0] = new Vector(); T2[0].add(…); …..

 T3[0] = new String(‟….. ‟); if(T3[0].equals(…)) …..

Les tableaux

 Taille d’un tableau

Après la création d’un tableau sa taille ne peut pas être modifiée, sauf
si on crée un nouveau tableau et on le référencie par la même variable.
Dans tel cas les éléments de l’ancien sont perdus.

Remarque :

La taille d’un tableau peut être déterminé automatiquement par
l’intermédiaire de la propriété prédéfinie pour tous les tableaux :
length

Les tableaux

 Initialisation d’un tableau

Un tableau peut être créer un initialisation. Celle-ci se fait de la même
manière qu’en C : les éléments du tableau sont fournis entre accolades.

Exemple :

Les tableaux

 Tableau à plusieurs dimensions

Type nomDuTableau[][]…

Exemple: int M[][]

Création : M = new int[2][3]

Accès : M[i][j] = …

Remarque:

Si on suppose que la 1 ere dimension c’est les lignes et que la 2 eme
dimension c’est les colonnes, alors :

M.Length : le nombre de ligne

M[i].length : le nombre de colonne de la ligne i.

Les tableaux

 Tableau à plusieurs dimensions

Exemple :

int M [][] = { {1, 2, 4},

 {2, 8, 95}

};

→ Chaque M[i] est un tableau : M[0] → {1, 2, 4}

 M[1] → {2, 8, 95}

→ M.length = 2

 M[0].length = M[1].length = 3

Les tableaux

 Tableau à plusieurs dimensions

Résultat :

Chaque ligne de la matrice peut avoir un nombre d’éléments différents

Exemple:

int M [][] = {

 {1, 2},

 {2, 8, 6, 3},

 {5, 8, 15}

};

Les types wrappers

Définition:

Les objet de type wrappers (enveloppeurs : Integer, Long, Float, Double)
représentent des objets qui encapsulent une donnée de type primitif et
qui fournissent un ensemble de méthodes qui permettent notamment
de faire des conversions.

Remarque :

Ces classes ne sont pas interchangeables avec les types primitifs
d'origine car il s'agit d'objet

Float reel = new Float("3.1415");

System.out.println(5 * reel); // erreur à la compil

La classe Object

C'est la super classe de toutes les classes Java : toutes ces méthodes
sont donc héritées par toutes les classes.

Voici la liste des méthodes de la classe Object:

 protected Object clone()

 boolean equals(Object obj)

 protected void finalize()

 Class getClass()

La classe Object

Les méthodes de la classe Object (Suit)

 int hashCode()

 void notify()

 void notifyAll()

 String toString()

 void wait()

 void wait(long timeout)

 void wait(long timeout, int nanos)

La gestion des chaine de caractère

 La classe String

Une chaîne de caractères est contenue dans un objet de la classe String
On peut initialiser une variable String sans appeler explicitement un
constructeur : le compilateur se charge de créer un objet.

Exemple : deux déclarations de chaines identiques

String uneChaine = "bonjour";

String uneChaine = new String("bonjour");

L’opérateur + permet de concaténer deux chaines de caractères

On peut tester si une chaine est vide ou non en utilisant isEmpty().

La gestion des chaine de caractère

 La classe String

La comparaison de deux chaînes doit se faire via la méthode equals()
qui compare les objets eux même et non l'opérateur == qui compare
les références de ces objets.

Exemple :

String nom1 = new String("Bonjour");

String nom2 = new String("Bonjour");

System.out.println(nom1 == nom2); // affiche false

System.out.println(nom1.equals(nom2)); // affiche true

La gestion des chaine de caractère

 La classe String : méthodes

La gestion des chaine de caractère

 La classe StringBuffer :

Les objets de cette classe contiennent des chaines de caractères
variables, ce qui permet de les agrandir ou de les réduire.

Cet objet peut être utilisé pour construire ou modifier une chaîne de
caractères chaque fois que l'utilisation de la classe String nécessiterait de
nombreuses instanciations d'objets temporaires.

La classe StringBuffer dispose de nombreuses méthodes qui permettent
de modifier le contenu de la chaîne de caractère.

Quelques propriétés du langage Java

1 - Les tableaux tels qu’ils sont définis en Java (objets dynamiques) ne
peuvent pas remplacer la notion de liste. En effet, dès qu’ils sont créés,
on ne peut plus leur modifier la taille, sauf si on remplace le tableau
créé par un autre.

2 - Pour gérer les listes, on peut:

 Les créer à l’aide de classes.

 Ou encore utiliser une classe Liste existante : LinkedList, Vector ou
Stack du package java.util.

Quelques propriétés du langage Java

3 - Un tableau de char n’est pas une chaine de caractère en Java. Il ne
peut donc pas être géré comme une chaine.

Exemple:

L’écriture : char S[] = ‟abc‟ ;

est incorrecte.

4 – Il est possible de convertir un tableau char [] en une chaine (String)
par l’intermédiaire de l’un des constructeurs de la classe String.

Exemple:

char S1[] = {‘a’, ‘b’, ‘c’};

String s2 = new String(S2);

Quelques propriétés du langage Java

5 - Les variables de la classe (ou attributs) peuvent être initialiser lors de
leur déclaration (à l’inverse de C++).

Class Classe1 {

 private int x = 12, y = 25;

 …..

}

6 - Toutes les classes prédéfinies ou définies par l’utilisateur lui même
dévirent directement ou indirectement de la classe Objet
(java.lang.Object) . En conséquent les méthodes qui acceptent des
paramètres de type Objet peuvent recevoir des arguments d’instance
de n’importe quelle classe.

Quelques propriétés du langage Java

7 - Pour déterminer le nom de classe d’un objet, on peut utiliser dans
l’une des méthodes (non static) de la classe l’instruction :
getClass().getName(). La méthode getClass() retourne la classe (objet
de type Class), et la méthode getName() (de la classe Class) retourne,
sous forme de chaine de caractère, le nom de la classe :

8 - Pour déterminer le nom de la classe mère d’un objet, on peut
utiliser dans l’une des méthodes non static de la classe l’instruction :
getClass().getSuperclass().getName().

La méthode getSuperclass() de la classe Class retourne un objet de
type Class qui contient la classe mère de l’objet en cours.

La gestion des exceptions

La gestion des exceptions en Java offre des moyens structurés pour
capturer les erreurs d’exécution d’un programme et de fournir des
informations significatives à leur sujet. Pour le traitement des exceptions,
on utilise les mots clés try, catch et finally :

La gestion des exceptions

Le bloc try doit être utilisé pour entourer tout code susceptible de
déclencher une exception ayant besoin d’être gérée. Si aucune exception
n’est déclenchée, tout le code du bloc try est exécuté. Mais, si une
exception est déclenchée, le code du bloc try arrête l’exécution à l’endroit
où l’exception a été déclenchée et le contrôle passe au bloc catch, dans
lequel l’exception est gérée.

La gestion des exceptions

Le bloc catch permet de traiter l’exception. On peut faire tout ce dont on
a besoin pour gérer l’exception dans une ou plusieurs blocs catch. Le
moyen le plus simple de gérer des exceptions peut être réalisé à travers
un seul bloc catch. Pour cela, l’argument entre les parenthèses suivant
catch doit indiquer la classe Exception, suivie d’un nom de variable à
affecter à cette exception. Cela indique que toute exception qui est une
instance de java.lang.Exception ou de n’importe laquelle de ses sous-
classes sera capturée.

La gestion des exceptions

Le bloc finally est optionnel. Le code se trouvant dans le bloc finally sera
toujours exécuté, même si le bloc try qu’il déclenche une exception et ne
se termine.

